Local indecomposability of Tate modules of non-CM abelian varieties with real multiplication
Journal of the American Mathematical Society, Tome 26 (2013) no. 3, pp. 853-877

Voir la notice de l'article provenant de la source American Mathematical Society

Indecomposability of $p$-adic Tate modules over the $p$-inertia group for non-CM (partially $p$-ordinary) abelian varieties with real multiplication is proven under unramifiedness of $p$ in the base field and in the multiplication field.
DOI : 10.1090/S0894-0347-2013-00762-6

Hida, Haruzo 1

1 Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095-1555
@article{10_1090_S0894_0347_2013_00762_6,
     author = {Hida, Haruzo},
     title = {Local indecomposability of {Tate} modules of {non-CM} abelian varieties with real multiplication},
     journal = {Journal of the American Mathematical Society},
     pages = {853--877},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2013},
     doi = {10.1090/S0894-0347-2013-00762-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00762-6/}
}
TY  - JOUR
AU  - Hida, Haruzo
TI  - Local indecomposability of Tate modules of non-CM abelian varieties with real multiplication
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 853
EP  - 877
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00762-6/
DO  - 10.1090/S0894-0347-2013-00762-6
ID  - 10_1090_S0894_0347_2013_00762_6
ER  - 
%0 Journal Article
%A Hida, Haruzo
%T Local indecomposability of Tate modules of non-CM abelian varieties with real multiplication
%J Journal of the American Mathematical Society
%D 2013
%P 853-877
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00762-6/
%R 10.1090/S0894-0347-2013-00762-6
%F 10_1090_S0894_0347_2013_00762_6
Hida, Haruzo. Local indecomposability of Tate modules of non-CM abelian varieties with real multiplication. Journal of the American Mathematical Society, Tome 26 (2013) no. 3, pp. 853-877. doi: 10.1090/S0894-0347-2013-00762-6

[1] Mumford, David Abelian varieties 2008

[2] Shimura, Goro Abelian varieties with complex multiplication and modular functions 1998

[3] Serre, Jean-Pierre Abelian 𝑙-adic representations and elliptic curves 1998 199

[4] Arithmetic geometry 1986

[5] Buzzard, Kevin, Diamond, Fred, Jarvis, Frazer On Serre’s conjecture for mod ℓ Galois representations over totally real fields Duke Math. J. 2010 105 161

[6] Banaszak, G., Gajda, W., Krasoå„, P. On Galois representations for abelian varieties with complex and real multiplications J. Number Theory 2003 117 132

[7] Bosch, Siegfried, Lã¼Tkebohmert, Werner Formal and rigid geometry. I. Rigid spaces Math. Ann. 1993 291 317

[8] Conrad, Brian Several approaches to non-Archimedean geometry 2008 9 63

[9] De Jong, A. J. Crystalline Dieudonné module theory via formal and rigid geometry Inst. Hautes Études Sci. Publ. Math. 1995

[10] Helgason, Sigurdur Differential geometry, Lie groups, and symmetric spaces 1978

[11] Mumford, David Geometric invariant theory 1965

[12] Ghate, Eknath Ordinary forms and their local Galois representations 2005 226 242

[13] Ghate, Eknath, Vatsal, Vinayak On the local behaviour of ordinary Λ-adic representations Ann. Inst. Fourier (Grenoble) 2004

[14] Hida, Haruzo Geometric modular forms and elliptic curves 2012

[15] Hida, Haruzo Automorphism groups of Shimura varieties Doc. Math. 2006 25 56

[16] Hida, Haruzo The Iwasawa 𝜇-invariant of 𝑝-adic Hecke 𝐿-functions Ann. of Math. (2) 2010 41 137

[17] Hida, Haruzo Constancy of adjoint ℒ-invariant J. Number Theory 2011 1331 1346

[18] Hida, Haruzo Irreducibility of the Igusa tower over unitary Shimura varieties 2011 187 203

[19] Shimura, Goro Introduction to the arithmetic theory of automorphic functions 1971

[20] Katz, N. Serre-Tate local moduli 1981 138 202

[21] Katz, Nicholas M. 𝑝-adic 𝐿-functions for CM fields Invent. Math. 1978 199 297

[22] Miyake, Toshitsune On automorphism groups of the fields of automorphic functions Ann. of Math. (2) 1972 243 252

[23] Noot, Rutger Abelian varieties—Galois representation and properties of ordinary reduction Compositio Math. 1995 161 171

[24] Bosch, S., Gã¼Ntzer, U., Remmert, R. Non-Archimedean analysis 1984

[25] Hida, Haruzo 𝑝-adic automorphic forms on Shimura varieties 2004

[26] Rapoport, M. Compactifications de l’espace de modules de Hilbert-Blumenthal Compositio Math. 1978 255 335

[27] Ribet, Kenneth A. Galois action on division points of Abelian varieties with real multiplications Amer. J. Math. 1976 751 804

[28] Serre, Jean-Pierre Quelques applications du théorème de densité de Chebotarev Inst. Hautes Études Sci. Publ. Math. 1981 323 401

[29] Shimura, Goro On canonical models of arithmetic quotients of bounded symmetric domains Ann. of Math. (2) 1970 144 222

[30] Tate, J. T. 𝑝-divisible groups 1967 158 183

Cité par Sources :