Loop groups and twisted 𝐾-theory II
Journal of the American Mathematical Society, Tome 26 (2013) no. 3, pp. 595-644

Voir la notice de l'article provenant de la source American Mathematical Society

This is the second in a series of papers investigating the relationship between the twisted equivariant $K$-theory of a compact Lie group $G$ and the “Verlinde ring” of its loop group. We introduce the Dirac family of Fredholm operators associated to a positive energy representation of a loop group. It determines a map from isomorphism classes of representations to twisted $K$-theory, which we prove is an isomorphism if $G$ is connected with a torsion-free fundamental group. We also introduce a Dirac family for finite dimensional representations of compact Lie groups; it is closely related to both the Kirillov correspondence and the equivariant Thom isomorphism. (In Part III of this series we extend the proof of our main theorem to arbitrary compact Lie groups $G$ and provide supplements in various directions. In Part I we develop twisted equivariant $K$-theory and carry out some of the computations needed here.)
DOI : 10.1090/S0894-0347-2013-00761-4

Freed, Daniel 1 ; Hopkins, Michael 2 ; Teleman, Constantin 3

1 Department of Mathematics, University of Texas, 1 University Station C1200, Austin, Texas 78712-0257
2 Department of Mathematics, Harvard University, One Oxford Street, Cambridge, Massachusetts 02138
3 Department of Mathematics, University of California, 970 Evans Hall, Berkeley, California 94720-3840
@article{10_1090_S0894_0347_2013_00761_4,
     author = {Freed, Daniel and Hopkins, Michael and Teleman, Constantin},
     title = {Loop groups and twisted {\dh}{\textthreequarters}-theory {II}},
     journal = {Journal of the American Mathematical Society},
     pages = {595--644},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2013},
     doi = {10.1090/S0894-0347-2013-00761-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00761-4/}
}
TY  - JOUR
AU  - Freed, Daniel
AU  - Hopkins, Michael
AU  - Teleman, Constantin
TI  - Loop groups and twisted 𝐾-theory II
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 595
EP  - 644
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00761-4/
DO  - 10.1090/S0894-0347-2013-00761-4
ID  - 10_1090_S0894_0347_2013_00761_4
ER  - 
%0 Journal Article
%A Freed, Daniel
%A Hopkins, Michael
%A Teleman, Constantin
%T Loop groups and twisted 𝐾-theory II
%J Journal of the American Mathematical Society
%D 2013
%P 595-644
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00761-4/
%R 10.1090/S0894-0347-2013-00761-4
%F 10_1090_S0894_0347_2013_00761_4
Freed, Daniel; Hopkins, Michael; Teleman, Constantin. Loop groups and twisted 𝐾-theory II. Journal of the American Mathematical Society, Tome 26 (2013) no. 3, pp. 595-644. doi: 10.1090/S0894-0347-2013-00761-4

[1] Adams, J. Frank Lectures on Lie groups 1969

[2] Alekseev, A., Meinrenken, E. The non-commutative Weil algebra Invent. Math. 2000 135 172

[3] Atiyah, M. F., Bott, R. A Lefschetz fixed point formula for elliptic complexes. II. Applications Ann. of Math. (2) 1968 451 491

[4] Atiyah, M. F., Bott, R., Shapiro, A. Clifford modules Topology 1964 3 38

[5] Atiyah, Michael, Segal, Graeme Twisted 𝐾-theory Ukr. Mat. Visn. 2004 287 330

[6] Bott, Raoul Homogeneous vector bundles Ann. of Math. (2) 1957 203 248

[7] Duistermaat, J. J., Kolk, J. A. C. Lie groups 2000

[8] Freed, Daniel S. The geometry of loop groups J. Differential Geom. 1988 223 276

[9] Freed, Daniel S., Hopkins, Michael J., Teleman, Constantin Loop groups and twisted 𝐾-theory I J. Topol. 2011 737 798

[10] Freed, Daniel S., Hopkins, Michael J., Teleman, Constantin Twisted equivariant 𝐾-theory with complex coefficients J. Topol. 2008 16 44

[11] Freed, Daniel S., Hopkins, Michael J., Teleman, Constantin Loop groups and twisted 𝐾-theory III Ann. of Math. (2) 2011 947 1007

[12] Freed, Daniel S., Hopkins, Michael J., Teleman, Constantin Consistent orientation of moduli spaces 2010 395 419

[13] Goette, Sebastian Equivariant 𝜂-invariants on homogeneous spaces Math. Z. 1999 1 42

[14] Hitchin, Nigel Generalized geometry—an introduction 2010 185 208

[15] Hille, Einar On roots and logarithms of elements of a complex Banach algebra Math. Ann. 1958 46 57

[16] Kac, Victor G. Infinite-dimensional Lie algebras 1990

[17] Kirillov, A. A. Lectures on the orbit method 2004

[18] Kostant, Bertram Lie algebra cohomology and the generalized Borel-Weil theorem Ann. of Math. (2) 1961 329 387

[19] Kostant, Bertram A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups Duke Math. J. 1999 447 501

[20] Kostant, Bertram, Sternberg, Shlomo Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras Ann. Physics 1987 49 113

[21] Landweber, Gregory D. Multiplets of representations and Kostant’s Dirac operator for equal rank loop groups Duke Math. J. 2001 121 160

[22] Mickelsson, Jouko Gerbes, (twisted) 𝐾-theory, and the supersymmetric WZW model 2004 93 107

[23] Pressley, Andrew, Segal, Graeme Loop groups 1986

[24] Rocha-Caridi, Alvany, Wallach, Nolan R. Projective modules over graded Lie algebras. I Math. Z. 1982 151 177

[25] Segal, Graeme Cohomology of topological groups 1970 377 387

[26] Slebarski, Stephen Dirac operators on a compact Lie group Bull. London Math. Soc. 1985 579 583

Cité par Sources :