Stationary measures and invariant subsets of homogeneous spaces (II)
Journal of the American Mathematical Society, Tome 26 (2013) no. 3, pp. 659-734 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

Let $G$ be a real Lie group, $\Lambda$ a lattice of $G$, $\mu$ a compactly supported probability measure on $G$, and $\Gamma$ the subgroup generated by the support of $\mu$. We prove that, when the Zariski closure of the adjoint group $\textrm {Ad }(\Gamma )$ is semisimple with no compact factor, every $\mu$-ergodic $\mu$-stationary probability measure on $G/\Lambda$ is homogeneous. We also prove similar results for $p$-adic Lie groups.
DOI : 10.1090/S0894-0347-2013-00760-2

Benoist, Yves  1   ; Quint, Jean-François  2

1 CNRS, Université Paris-Sud Bat.425, 91405 Orsay, France
2 CNRS – Université Paris-Nord, LAGA, 93430 Villetaneuse, France
@article{10_1090_S0894_0347_2013_00760_2,
     author = {Benoist, Yves and Quint, Jean-Fran\c{c}ois},
     title = {Stationary measures and invariant subsets of homogeneous spaces {(II)}},
     journal = {Journal of the American Mathematical Society},
     pages = {659--734},
     year = {2013},
     volume = {26},
     number = {3},
     doi = {10.1090/S0894-0347-2013-00760-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00760-2/}
}
TY  - JOUR
AU  - Benoist, Yves
AU  - Quint, Jean-François
TI  - Stationary measures and invariant subsets of homogeneous spaces (II)
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 659
EP  - 734
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00760-2/
DO  - 10.1090/S0894-0347-2013-00760-2
ID  - 10_1090_S0894_0347_2013_00760_2
ER  - 
%0 Journal Article
%A Benoist, Yves
%A Quint, Jean-François
%T Stationary measures and invariant subsets of homogeneous spaces (II)
%J Journal of the American Mathematical Society
%D 2013
%P 659-734
%V 26
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00760-2/
%R 10.1090/S0894-0347-2013-00760-2
%F 10_1090_S0894_0347_2013_00760_2
Benoist, Yves; Quint, Jean-François. Stationary measures and invariant subsets of homogeneous spaces (II). Journal of the American Mathematical Society, Tome 26 (2013) no. 3, pp. 659-734. doi: 10.1090/S0894-0347-2013-00760-2

[1] Benoist, Y. Propriétés asymptotiques des groupes linéaires Geom. Funct. Anal. 1997 1 47

[2] Benoist, Yves, Quint, Jean-François Mesures stationnaires et fermés invariants des espaces homogènes II C. R. Math. Acad. Sci. Paris 2011 341 345

[3] Benoist, Yves, Quint, Jean-Francois Random walks on finite volume homogeneous spaces Invent. Math. 2012 37 59

[4] Bougerol, Philippe, Lacroix, Jean Products of random matrices with applications to Schrödinger operators 1985

[5] Bourgain, Jean, Furman, Alex, Lindenstrauss, Elon, Mozes, Shahar Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus J. Amer. Math. Soc. 2011 231 280

[6] Chacon, R. V., Ornstein, D. S. A general ergodic theorem Illinois J. Math. 1960 153 160

[7] Dani, S. G., Margulis, G. A. Limit distributions of orbits of unipotent flows and values of quadratic forms 1993 91 137

[8] Dixon, J. D., Du Sautoy, M. P. F., Mann, A., Segal, D. Analytic pro-𝑝-groups 1991

[9] Eskin, Alex, Margulis, Gregory Recurrence properties of random walks on finite volume homogeneous manifolds 2004 431 444

[10] Guivarc’H, Yves, Raugi, Albert Propriétés de contraction d’un semi-groupe de matrices inversibles. Coefficients de Liapunoff d’un produit de matrices aléatoires indépendantes Israel J. Math. 1989 165 196

[11] Heu, Jean-Romain Dynamical properties of groups of automorphisms on Heisenberg nilmanifolds Geom. Dedicata 2010 89 101

[12] Margulis, Gregory Problems and conjectures in rigidity theory 2000 161 174

[13] Margulis, G. A., Tomanov, G. M. Invariant measures for actions of unipotent groups over local fields on homogeneous spaces Invent. Math. 1994 347 392

[14] Meyn, S. P., Tweedie, R. L. Markov chains and stochastic stability 1993

[15] Quint, J.-F. Cônes limites des sous-groupes discrets des groupes réductifs sur un corps local Transform. Groups 2002 247 266

[16] Raghunathan, M. S. Discrete subgroups of Lie groups 1972

[17] Ratner, Marina On Raghunathan’s measure conjecture Ann. of Math. (2) 1991 545 607

[18] Ratner, Marina Raghunathan’s conjectures for Cartesian products of real and 𝑝-adic Lie groups Duke Math. J. 1995 275 382

[19] Tits, J. Reductive groups over local fields 1979 29 69

[20] Zimmer, Robert J. Ergodic theory and semisimple groups 1984

Cité par Sources :