Symbolic dynamics for surface diffeomorphisms with positive entropy
Journal of the American Mathematical Society, Tome 26 (2013) no. 2, pp. 341-426

Voir la notice de l'article provenant de la source American Mathematical Society

Let $f$ be a $C^{1+\varepsilon }$ diffeomorphism on a compact smooth surface with positive topological entropy $h$. For every $0\delta $, we construct an invariant Borel set $E$ and a countable Markov partition for the restriction of $f$ to $E$ in such a way that $E$ has full measure with respect to every ergodic invariant probability measure with entropy greater than $\delta$. The following results follow: $f$ has at most countably many ergodic measures of maximal entropy (a conjecture of J. Buzzi), and in the case when $f$ is $C^\infty$, $\limsup \limits _{n\to \infty }e^{-n h}\#\{x:f^n(x)=x\}>0$ (a conjecture of A. Katok).
DOI : 10.1090/S0894-0347-2012-00758-9

Sarig, Omri 1

1 Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot 76100, Israel
@article{10_1090_S0894_0347_2012_00758_9,
     author = {Sarig, Omri},
     title = {Symbolic dynamics for surface diffeomorphisms with positive entropy},
     journal = {Journal of the American Mathematical Society},
     pages = {341--426},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2013},
     doi = {10.1090/S0894-0347-2012-00758-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00758-9/}
}
TY  - JOUR
AU  - Sarig, Omri
TI  - Symbolic dynamics for surface diffeomorphisms with positive entropy
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 341
EP  - 426
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00758-9/
DO  - 10.1090/S0894-0347-2012-00758-9
ID  - 10_1090_S0894_0347_2012_00758_9
ER  - 
%0 Journal Article
%A Sarig, Omri
%T Symbolic dynamics for surface diffeomorphisms with positive entropy
%J Journal of the American Mathematical Society
%D 2013
%P 341-426
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00758-9/
%R 10.1090/S0894-0347-2012-00758-9
%F 10_1090_S0894_0347_2012_00758_9
Sarig, Omri. Symbolic dynamics for surface diffeomorphisms with positive entropy. Journal of the American Mathematical Society, Tome 26 (2013) no. 2, pp. 341-426. doi: 10.1090/S0894-0347-2012-00758-9

[1] Adler, R. L., Weiss, B. Entropy, a complete metric invariant for automorphisms of the torus Proc. Nat. Acad. Sci. U.S.A. 1967 1573 1576

[2] Barreira, Luis, Pesin, Yakov Nonuniform hyperbolicity 2007

[3] Benedicks, Michael, Young, Lai-Sang Markov extensions and decay of correlations for certain Hénon maps Astérisque 2000

[4] Berg, Kenneth Richard ON THE CONJUGACY PROBLEM FOR K-SYSTEMS 1967 50

[5] Bowen, Rufus Markov partitions for Axiom 𝐴 diffeomorphisms Amer. J. Math. 1970 725 747

[6] Bowen, Rufus Periodic points and measures for Axiom 𝐴 diffeomorphisms Trans. Amer. Math. Soc. 1971 377 397

[7] Bowen, Rufus On Axiom A diffeomorphisms 1978

[8] Bowen, Rufus Equilibrium states and the ergodic theory of Anosov diffeomorphisms 2008

[9] Boyle, Mike, Downarowicz, Tomasz The entropy theory of symbolic extensions Invent. Math. 2004 119 161

[10] Boyle, Mike, Fiebig, Doris, Fiebig, Ulf Residual entropy, conditional entropy and subshift covers Forum Math. 2002 713 757

[11] Bruin, H. Induced maps, Markov extensions and invariant measures in one-dimensional dynamics Comm. Math. Phys. 1995 571 580

[12] Bruin, Henk, Todd, Mike Markov extensions and lifting measures for complex polynomials Ergodic Theory Dynam. Systems 2007 743 768

[13] Bunimovich, L. A., Sinaä­, Ya. G. Markov partitions for dispersed billiards Comm. Math. Phys. 1980/81 247 280

[14] Bunimovich, L. A., Sinaä­, Ya. G., Chernov, N. I. Markov partitions for two-dimensional hyperbolic billiards Uspekhi Mat. Nauk 1990

[15] Burguet, David 𝒞² surface diffeomorphisms have symbolic extensions Invent. Math. 2011 191 236

[16] Buzzi, Jã©Rã´Me Intrinsic ergodicity of smooth interval maps Israel J. Math. 1997 125 161

[17] Buzzi, Jã©Rã´Me Markov extensions for multi-dimensional dynamical systems Israel J. Math. 1999 357 380

[18] Buzzi, Jã©Rã´Me Subshifts of quasi-finite type Invent. Math. 2005 369 406

[19] Buzzi, Jã©Rã´Me Maximal entropy measures for piecewise affine surface homeomorphisms Ergodic Theory Dynam. Systems 2009 1723 1763

[20] Buzzi, Jã©Rã´Me Puzzles of quasi-finite type, zeta functions and symbolic dynamics for multi-dimensional maps Ann. Inst. Fourier (Grenoble) 2010 801 852

[21] Downarowicz, Tomasz, Newhouse, Sheldon Symbolic extensions and smooth dynamical systems Invent. Math. 2005 453 499

[22] Goodman, T. N. T. Relating topological entropy and measure entropy Bull. London Math. Soc. 1971 176 180

[23] Gureviä, B. M. Topological entropy of a countable Markov chain Dokl. Akad. Nauk SSSR 1969 715 718

[24] Gureviä, B. M. Shift entropy and Markov measures in the space of paths of a countable graph Dokl. Akad. Nauk SSSR 1970 963 965

[25] Hofbauer, Franz On intrinsic ergodicity of piecewise monotonic transformations with positive entropy Israel J. Math. 1979

[26] Hofbauer, Franz The structure of piecewise monotonic transformations Ergodic Theory Dynam. Systems 1981 159 178

[27] Iommi, Godofredo, Todd, Mike Natural equilibrium states for multimodal maps Comm. Math. Phys. 2010 65 94

[28] Kaloshin, Vadim Yu. Generic diffeomorphisms with superexponential growth of number of periodic orbits Comm. Math. Phys. 2000 253 271

[29] Katok, A. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms Inst. Hautes Études Sci. Publ. Math. 1980 137 173

[30] Katok, Anatole Nonuniform hyperbolicity and structure of smooth dynamical systems 1984 1245 1253

[31] Katok, Anatole Fifty years of entropy in dynamics: 1958–2007 J. Mod. Dyn. 2007 545 596

[32] Katok, Anatole, Hasselblatt, Boris Introduction to the modern theory of dynamical systems 1995

[33] Keller, Gerhard Lifting measures to Markov extensions Monatsh. Math. 1989 183 200

[34] Keller, G. Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems Trans. Amer. Math. Soc. 1989 433 497

[35] Kitchens, Bruce P. Symbolic dynamics 1998

[36] Krã¼Ger, Tyll, Troubetzkoy, Serge Markov partitions and shadowing for non-uniformly hyperbolic systems with singularities Ergodic Theory Dynam. Systems 1992 487 508

[37] Margulis, Grigoriy A. On some aspects of the theory of Anosov systems 2004

[38] Newhouse, Sheldon E. Continuity properties of entropy Ann. of Math. (2) 1989 215 235

[39] Oseledec, V. I. A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems Trudy Moskov. Mat. Obšč. 1968 179 210

[40] Parry, William, Pollicott, Mark Zeta functions and the periodic orbit structure of hyperbolic dynamics Astérisque 1990 268

[41] Pesin, Ja. B. Families of invariant manifolds that correspond to nonzero characteristic exponents Izv. Akad. Nauk SSSR Ser. Mat. 1976

[42] Pesin, Ya. B., Senti, S., Zhang, K. Lifting measures to inducing schemes Ergodic Theory Dynam. Systems 2008 553 574

[43] Ruelle, David An inequality for the entropy of differentiable maps Bol. Soc. Brasil. Mat. 1978 83 87

[44] Sinaä­, Ja. G. Construction of Markov partitionings Funkcional. Anal. i Priložen. 1968

[45] Sinaä­, Ja. G. Gibbs measures in ergodic theory Uspehi Mat. Nauk 1972 21 64

[46] Smale, S. Differentiable dynamical systems Bull. Amer. Math. Soc. 1967 747 817

[47] Spivak, Michael A comprehensive introduction to differential geometry. Vol. I 1979

[48] Srivastava, S. M. A course on Borel sets 1998

[49] Takahashi, Y\B{O}Ichir\B{O} Isomorphisms of 𝛽-automorphisms to Markov automorphisms Osaka Math. J. 1973 175 184

[50] Young, Lai-Sang Statistical properties of dynamical systems with some hyperbolicity Ann. of Math. (2) 1998 585 650

[51] Zweimã¼Ller, Roland Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points Ergodic Theory Dynam. Systems 2000 1519 1549

Cité par Sources :