@article{10_1090_S0894_0347_2012_00758_9,
author = {Sarig, Omri},
title = {Symbolic dynamics for surface diffeomorphisms with positive entropy},
journal = {Journal of the American Mathematical Society},
pages = {341--426},
year = {2013},
volume = {26},
number = {2},
doi = {10.1090/S0894-0347-2012-00758-9},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00758-9/}
}
TY - JOUR AU - Sarig, Omri TI - Symbolic dynamics for surface diffeomorphisms with positive entropy JO - Journal of the American Mathematical Society PY - 2013 SP - 341 EP - 426 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00758-9/ DO - 10.1090/S0894-0347-2012-00758-9 ID - 10_1090_S0894_0347_2012_00758_9 ER -
%0 Journal Article %A Sarig, Omri %T Symbolic dynamics for surface diffeomorphisms with positive entropy %J Journal of the American Mathematical Society %D 2013 %P 341-426 %V 26 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00758-9/ %R 10.1090/S0894-0347-2012-00758-9 %F 10_1090_S0894_0347_2012_00758_9
Sarig, Omri. Symbolic dynamics for surface diffeomorphisms with positive entropy. Journal of the American Mathematical Society, Tome 26 (2013) no. 2, pp. 341-426. doi: 10.1090/S0894-0347-2012-00758-9
[1] , Entropy, a complete metric invariant for automorphisms of the torus Proc. Nat. Acad. Sci. U.S.A. 1967 1573 1576
[2] , Nonuniform hyperbolicity 2007
[3] , Markov extensions and decay of correlations for certain Hénon maps Astérisque 2000
[4] ON THE CONJUGACY PROBLEM FOR K-SYSTEMS 1967 50
[5] Markov partitions for Axiom 𝐴 diffeomorphisms Amer. J. Math. 1970 725 747
[6] Periodic points and measures for Axiom 𝐴 diffeomorphisms Trans. Amer. Math. Soc. 1971 377 397
[7] On Axiom A diffeomorphisms 1978
[8] Equilibrium states and the ergodic theory of Anosov diffeomorphisms 2008
[9] , The entropy theory of symbolic extensions Invent. Math. 2004 119 161
[10] , , Residual entropy, conditional entropy and subshift covers Forum Math. 2002 713 757
[11] Induced maps, Markov extensions and invariant measures in one-dimensional dynamics Comm. Math. Phys. 1995 571 580
[12] , Markov extensions and lifting measures for complex polynomials Ergodic Theory Dynam. Systems 2007 743 768
[13] , Markov partitions for dispersed billiards Comm. Math. Phys. 1980/81 247 280
[14] , , Markov partitions for two-dimensional hyperbolic billiards Uspekhi Mat. Nauk 1990
[15] 𝒞² surface diffeomorphisms have symbolic extensions Invent. Math. 2011 191 236
[16] Intrinsic ergodicity of smooth interval maps Israel J. Math. 1997 125 161
[17] Markov extensions for multi-dimensional dynamical systems Israel J. Math. 1999 357 380
[18] Subshifts of quasi-finite type Invent. Math. 2005 369 406
[19] Maximal entropy measures for piecewise affine surface homeomorphisms Ergodic Theory Dynam. Systems 2009 1723 1763
[20] Puzzles of quasi-finite type, zeta functions and symbolic dynamics for multi-dimensional maps Ann. Inst. Fourier (Grenoble) 2010 801 852
[21] , Symbolic extensions and smooth dynamical systems Invent. Math. 2005 453 499
[22] Relating topological entropy and measure entropy Bull. London Math. Soc. 1971 176 180
[23] Topological entropy of a countable Markov chain Dokl. Akad. Nauk SSSR 1969 715 718
[24] Shift entropy and Markov measures in the space of paths of a countable graph Dokl. Akad. Nauk SSSR 1970 963 965
[25] On intrinsic ergodicity of piecewise monotonic transformations with positive entropy Israel J. Math. 1979
[26] The structure of piecewise monotonic transformations Ergodic Theory Dynam. Systems 1981 159 178
[27] , Natural equilibrium states for multimodal maps Comm. Math. Phys. 2010 65 94
[28] Generic diffeomorphisms with superexponential growth of number of periodic orbits Comm. Math. Phys. 2000 253 271
[29] Lyapunov exponents, entropy and periodic orbits for diffeomorphisms Inst. Hautes Études Sci. Publ. Math. 1980 137 173
[30] Nonuniform hyperbolicity and structure of smooth dynamical systems 1984 1245 1253
[31] Fifty years of entropy in dynamics: 1958–2007 J. Mod. Dyn. 2007 545 596
[32] , Introduction to the modern theory of dynamical systems 1995
[33] Lifting measures to Markov extensions Monatsh. Math. 1989 183 200
[34] Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems Trans. Amer. Math. Soc. 1989 433 497
[35] Symbolic dynamics 1998
[36] , Markov partitions and shadowing for non-uniformly hyperbolic systems with singularities Ergodic Theory Dynam. Systems 1992 487 508
[37] On some aspects of the theory of Anosov systems 2004
[38] Continuity properties of entropy Ann. of Math. (2) 1989 215 235
[39] A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems Trudy Moskov. Mat. Obšč. 1968 179 210
[40] , Zeta functions and the periodic orbit structure of hyperbolic dynamics Astérisque 1990 268
[41] Families of invariant manifolds that correspond to nonzero characteristic exponents Izv. Akad. Nauk SSSR Ser. Mat. 1976
[42] , , Lifting measures to inducing schemes Ergodic Theory Dynam. Systems 2008 553 574
[43] An inequality for the entropy of differentiable maps Bol. Soc. Brasil. Mat. 1978 83 87
[44] Construction of Markov partitionings Funkcional. Anal. i Priložen. 1968
[45] Gibbs measures in ergodic theory Uspehi Mat. Nauk 1972 21 64
[46] Differentiable dynamical systems Bull. Amer. Math. Soc. 1967 747 817
[47] A comprehensive introduction to differential geometry. Vol. I 1979
[48] A course on Borel sets 1998
[49] Isomorphisms of 𝛽-automorphisms to Markov automorphisms Osaka Math. J. 1973 175 184
[50] Statistical properties of dynamical systems with some hyperbolicity Ann. of Math. (2) 1998 585 650
[51] Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points Ergodic Theory Dynam. Systems 2000 1519 1549
Cité par Sources :