Logarithmic Gromov-Witten invariants
Journal of the American Mathematical Society, Tome 26 (2013) no. 2, pp. 451-510

Voir la notice de l'article provenant de la source American Mathematical Society

The goal of this paper is to give a general theory of logarithmic Gromov-Witten invariants. This gives a vast generalization of the theory of relative Gromov-Witten invariants introduced by Li-Ruan, Ionel-Parker, and Jun Li and completes a program first proposed by the second named author in 2002. One considers target spaces $X$ carrying a log structure. Domains of stable log curves are log smooth curves. Algebraicity of the stack of such stable log maps is proven, subject only to the hypothesis that the log structure on $X$ is fine, saturated, and Zariski. A notion of basic stable log map is introduced; all stable log maps are pull-backs of basic stable log maps via base-change. With certain additional hypotheses, the stack of basic stable log maps is proven to be proper. Under these hypotheses and the additional hypothesis that $X$ is log smooth, one obtains a theory of log Gromov-Witten invariants.
DOI : 10.1090/S0894-0347-2012-00757-7

Gross, Mark 1 ; Siebert, Bernd 2

1 Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112
2 FB Mathematik, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
@article{10_1090_S0894_0347_2012_00757_7,
     author = {Gross, Mark and Siebert, Bernd},
     title = {Logarithmic {Gromov-Witten} invariants},
     journal = {Journal of the American Mathematical Society},
     pages = {451--510},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2013},
     doi = {10.1090/S0894-0347-2012-00757-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00757-7/}
}
TY  - JOUR
AU  - Gross, Mark
AU  - Siebert, Bernd
TI  - Logarithmic Gromov-Witten invariants
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 451
EP  - 510
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00757-7/
DO  - 10.1090/S0894-0347-2012-00757-7
ID  - 10_1090_S0894_0347_2012_00757_7
ER  - 
%0 Journal Article
%A Gross, Mark
%A Siebert, Bernd
%T Logarithmic Gromov-Witten invariants
%J Journal of the American Mathematical Society
%D 2013
%P 451-510
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00757-7/
%R 10.1090/S0894-0347-2012-00757-7
%F 10_1090_S0894_0347_2012_00757_7
Gross, Mark; Siebert, Bernd. Logarithmic Gromov-Witten invariants. Journal of the American Mathematical Society, Tome 26 (2013) no. 2, pp. 451-510. doi: 10.1090/S0894-0347-2012-00757-7

[1] Artin, M. Versal deformations and algebraic stacks Invent. Math. 1974 165 189

[2] Behrend, K. Gromov-Witten invariants in algebraic geometry Invent. Math. 1997 601 617

[3] Behrend, K., Fantechi, B. The intrinsic normal cone Invent. Math. 1997 45 88

[4] Behrend, K., Manin, Yu. Stacks of stable maps and Gromov-Witten invariants Duke Math. J. 1996 1 60

[5] Deligne, P., Mumford, D. The irreducibility of the space of curves of given genus Inst. Hautes Études Sci. Publ. Math. 1969 75 109

[6] Fulton, W., Pandharipande, R. Notes on stable maps and quantum cohomology 1997 45 96

[7] Gathmann, Andreas Absolute and relative Gromov-Witten invariants of very ample hypersurfaces Duke Math. J. 2002 171 203

[8] Gross, Mark The Strominger-Yau-Zaslow conjecture: from torus fibrations to degenerations 2009 149 192

[9] Grothendieck, Alexander Techniques de construction et théorèmes d’existence en géométrie algébrique. IV. Les schémas de Hilbert 1995

[10] Illusie, Luc Complexe cotangent et déformations. I 1971

[11] Ionel, Eleny-Nicoleta, Parker, Thomas H. Relative Gromov-Witten invariants Ann. of Math. (2) 2003 45 96

[12] Kato, Fumiharu Log smooth deformation and moduli of log smooth curves Internat. J. Math. 2000 215 232

[13] Kato, Kazuya Logarithmic structures of Fontaine-Illusie 1989 191 224

[14] Kim, Bumsig Logarithmic stable maps 2010 167 200

[15] Knudsen, Finn F. The projectivity of the moduli space of stable curves. II. The stacks 𝑀_{𝑔,𝑛} Math. Scand. 1983 161 199

[16] Knutson, Donald Algebraic spaces 1971

[17] Kresch, Andrew Cycle groups for Artin stacks Invent. Math. 1999 495 536

[18] Laumon, Gã©Rard, Moret-Bailly, Laurent Champs algébriques 2000

[19] Li, An-Min, Ruan, Yongbin Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds Invent. Math. 2001 151 218

[20] Li, Jun Stable morphisms to singular schemes and relative stable morphisms J. Differential Geom. 2001 509 578

[21] Li, Jun A degeneration formula of GW-invariants J. Differential Geom. 2002 199 293

[22] Li, Jun, Tian, Gang Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties J. Amer. Math. Soc. 1998 119 174

[23] Nishinou, Takeo, Siebert, Bernd Toric degenerations of toric varieties and tropical curves Duke Math. J. 2006 1 51

[24] Nitsure, Nitin Construction of Hilbert and Quot schemes 2005 105 137

[25] Olsson, Martin Christian Log algebraic stacks and moduli of log schemes 2001 186

[26] Olsson, Martin C. Logarithmic geometry and algebraic stacks Ann. Sci. École Norm. Sup. (4) 2003 747 791

[27] Olsson, Martin C. The logarithmic cotangent complex Math. Ann. 2005 859 931

[28] Olsson, Martin C. Deformation theory of representable morphisms of algebraic stacks Math. Z. 2006 25 62

[29] Parker, Brett Exploded manifolds Adv. Math. 2012 3256 3319

[30] Revêtements étales et groupe fondamental 1971

[31] Siebert, Bernd Virtual fundamental classes, global normal cones and Fulton’s canonical classes 2004 341 358

Cité par Sources :