Voir la notice de l'article provenant de la source American Mathematical Society
Ionescu, Alexandru 1 ; Klainerman, Sergiu 1
@article{10_1090_S0894_0347_2012_00754_1,
     author = {Ionescu, Alexandru and Klainerman, Sergiu},
     title = {On the local extension of {Killing} vector-fields in {Ricci} flat manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {563--593},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2013},
     doi = {10.1090/S0894-0347-2012-00754-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00754-1/}
}
                      
                      
                    TY - JOUR AU - Ionescu, Alexandru AU - Klainerman, Sergiu TI - On the local extension of Killing vector-fields in Ricci flat manifolds JO - Journal of the American Mathematical Society PY - 2013 SP - 563 EP - 593 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00754-1/ DO - 10.1090/S0894-0347-2012-00754-1 ID - 10_1090_S0894_0347_2012_00754_1 ER -
%0 Journal Article %A Ionescu, Alexandru %A Klainerman, Sergiu %T On the local extension of Killing vector-fields in Ricci flat manifolds %J Journal of the American Mathematical Society %D 2013 %P 563-593 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00754-1/ %R 10.1090/S0894-0347-2012-00754-1 %F 10_1090_S0894_0347_2012_00754_1
Ionescu, Alexandru; Klainerman, Sergiu. On the local extension of Killing vector-fields in Ricci flat manifolds. Journal of the American Mathematical Society, Tome 26 (2013) no. 2, pp. 563-593. doi: 10.1090/S0894-0347-2012-00754-1
[1] , , Hawkingâs local rigidity theorem without analyticity Geom. Funct. Anal. 2010 845 869
[2] , , Uniqueness of smooth stationary black holes in vacuum: small perturbations of the Kerr spaces Comm. Math. Phys. 2010 89 127
[3] , The global nonlinear stability of the Minkowski space 1993
[4] On rigidity of analytic black holes Comm. Math. Phys. 1997 1 7
[5] , The large scale structure of space-time 1973
[6] The analysis of linear partial differential operators. IV 1985
[7] , On the uniqueness of smooth, stationary black holes in vacuum Invent. Math. 2009 35 102
[8] , Uniqueness results for ill-posed characteristic problems in curved space-times Comm. Math. Phys. 2009 873 900
[9] On local and global existence of Killing vector fields Ann. of Math. (2) 1960 105 120
[10] Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations Proc. Roy. Soc. London Ser. A 1990 221 239
[11] On rotating black holes in equilibrium in general relativity Comm. Pure Appl. Math. 1990 903 948
Cité par Sources :
