On the local extension of Killing vector-fields in Ricci flat manifolds
Journal of the American Mathematical Society, Tome 26 (2013) no. 2, pp. 563-593

Voir la notice de l'article provenant de la source American Mathematical Society

We revisit the extension problem for Killing vector-fields in smooth Ricci flat manifolds, and its relevance to the black hole rigidity problem. We prove both a stronger version of the main local extension result established earlier, as well as two types of results concerning non-extendibility. In particular, we show that one can find local, stationary, vacuum extensions of a Kerr solution $\mathcal {K}(m,a)$, $0$, in a future neighborhood of any point $p$ of the past horizon lying outside both the bifurcation sphere and the axis of symmetry, which admit no extension of the Hawking vector-field of $\mathcal {K}(m,a)$. This result illustrates one of the major difficulties one faces in trying to extend Hawking’s rigidity result to the more realistic setting of smooth stationary solutions of the Einstein vacuum equations; unlike in the analytic situation, one cannot hope to construct an additional symmetry of stationary solutions (as in Hawking’s Rigidity Theorem) by relying only on local information.
DOI : 10.1090/S0894-0347-2012-00754-1

Ionescu, Alexandru 1 ; Klainerman, Sergiu 1

1 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
@article{10_1090_S0894_0347_2012_00754_1,
     author = {Ionescu, Alexandru and Klainerman, Sergiu},
     title = {On the local extension of {Killing} vector-fields in {Ricci} flat manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {563--593},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2013},
     doi = {10.1090/S0894-0347-2012-00754-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00754-1/}
}
TY  - JOUR
AU  - Ionescu, Alexandru
AU  - Klainerman, Sergiu
TI  - On the local extension of Killing vector-fields in Ricci flat manifolds
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 563
EP  - 593
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00754-1/
DO  - 10.1090/S0894-0347-2012-00754-1
ID  - 10_1090_S0894_0347_2012_00754_1
ER  - 
%0 Journal Article
%A Ionescu, Alexandru
%A Klainerman, Sergiu
%T On the local extension of Killing vector-fields in Ricci flat manifolds
%J Journal of the American Mathematical Society
%D 2013
%P 563-593
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00754-1/
%R 10.1090/S0894-0347-2012-00754-1
%F 10_1090_S0894_0347_2012_00754_1
Ionescu, Alexandru; Klainerman, Sergiu. On the local extension of Killing vector-fields in Ricci flat manifolds. Journal of the American Mathematical Society, Tome 26 (2013) no. 2, pp. 563-593. doi: 10.1090/S0894-0347-2012-00754-1

[1] Alexakis, Spyros, Ionescu, Alexandru D., Klainerman, Sergiu Hawking’s local rigidity theorem without analyticity Geom. Funct. Anal. 2010 845 869

[2] Alexakis, S., Ionescu, A. D., Klainerman, S. Uniqueness of smooth stationary black holes in vacuum: small perturbations of the Kerr spaces Comm. Math. Phys. 2010 89 127

[3] Christodoulou, Demetrios, Klainerman, Sergiu The global nonlinear stability of the Minkowski space 1993

[4] Chruå›Ciel, Piotr T. On rigidity of analytic black holes Comm. Math. Phys. 1997 1 7

[5] Hawking, S. W., Ellis, G. F. R. The large scale structure of space-time 1973

[6] Hã¶Rmander, Lars The analysis of linear partial differential operators. IV 1985

[7] Ionescu, Alexandru D., Klainerman, Sergiu On the uniqueness of smooth, stationary black holes in vacuum Invent. Math. 2009 35 102

[8] Ionescu, Alexandru D., Klainerman, Sergiu Uniqueness results for ill-posed characteristic problems in curved space-times Comm. Math. Phys. 2009 873 900

[9] Nomizu, Katsumi On local and global existence of Killing vector fields Ann. of Math. (2) 1960 105 120

[10] Rendall, A. D. Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations Proc. Roy. Soc. London Ser. A 1990 221 239

[11] Weinstein, Gilbert On rotating black holes in equilibrium in general relativity Comm. Pure Appl. Math. 1990 903 948

Cité par Sources :