Global rigidity of higher rank Anosov actions on tori and nilmanifolds
Journal of the American Mathematical Society, Tome 26 (2013) no. 1, pp. 167-198

Voir la notice de l'article provenant de la source American Mathematical Society

We show that sufficiently irreducible Anosov actions of higher rank abelian groups on tori and nilmanifolds are $C^{\infty }$-conjugate to affine actions.
DOI : 10.1090/S0894-0347-2012-00751-6

Fisher, David 1 ; Kalinin, Boris 2 ; Spatzier, Ralf 3

1 Department of Mathematics, Indiana University, Bloomington, Indiana 47405
2 Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802
3 Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
@article{10_1090_S0894_0347_2012_00751_6,
     author = {Fisher, David and Kalinin, Boris and Spatzier, Ralf},
     title = {Global rigidity of higher rank {Anosov} actions on tori and nilmanifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {167--198},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2013},
     doi = {10.1090/S0894-0347-2012-00751-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00751-6/}
}
TY  - JOUR
AU  - Fisher, David
AU  - Kalinin, Boris
AU  - Spatzier, Ralf
TI  - Global rigidity of higher rank Anosov actions on tori and nilmanifolds
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 167
EP  - 198
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00751-6/
DO  - 10.1090/S0894-0347-2012-00751-6
ID  - 10_1090_S0894_0347_2012_00751_6
ER  - 
%0 Journal Article
%A Fisher, David
%A Kalinin, Boris
%A Spatzier, Ralf
%T Global rigidity of higher rank Anosov actions on tori and nilmanifolds
%J Journal of the American Mathematical Society
%D 2013
%P 167-198
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00751-6/
%R 10.1090/S0894-0347-2012-00751-6
%F 10_1090_S0894_0347_2012_00751_6
Fisher, David; Kalinin, Boris; Spatzier, Ralf. Global rigidity of higher rank Anosov actions on tori and nilmanifolds. Journal of the American Mathematical Society, Tome 26 (2013) no. 1, pp. 167-198. doi: 10.1090/S0894-0347-2012-00751-6

[1] Barreira, Luis, Pesin, Yakov Nonuniform hyperbolicity 2007

[2] Blanksby, P. E., Montgomery, H. L. Algebraic integers near the unit circle Acta Arith. 1971 355 369

[3] Damjanoviä‡, Danijela, Katok, Anatole Local rigidity of partially hyperbolic actions I. KAM method and ℤ^{𝕜} actions on the torus Ann. of Math. (2) 2010 1805 1858

[4] Davis, James F., Kirk, Paul Lecture notes in algebraic topology 2001

[5] Farrell, F. T., Jones, L. E. Anosov diffeomorphisms constructed from 𝜋₁𝐷𝑖𝑓𝑓(𝑆ⁿ) Topology 1978 273 282

[6] Fisher, David, Margulis, Gregory Almost isometric actions, property (T), and local rigidity Invent. Math. 2005 19 80

[7] Fisher, David, Margulis, Gregory Local rigidity of affine actions of higher rank groups and lattices Ann. of Math. (2) 2009 67 122

[8] Fisher, David, Kalinin, Boris, Spatzier, Ralf Totally nonsymplectic Anosov actions on tori and nilmanifolds Geom. Topol. 2011 191 216

[9] Franks, John Anosov diffeomorphisms on tori Trans. Amer. Math. Soc. 1969 117 124

[10] Gogolev, Andrey Diffeomorphisms Hölder conjugate to Anosov diffeomorphisms Ergodic Theory Dynam. Systems 2010 441 456

[11] Green, Ben, Tao, Terence The quantitative behaviour of polynomial orbits on nilmanifolds Ann. of Math. (2) 2012 465 540

[12] Hirsch, Morris W., Mazur, Barry Smoothings of piecewise linear manifolds 1974

[13] Hirsch, M. W., Pugh, C. C., Shub, M. Invariant manifolds 1977

[14] Hã¶Rmander, Lars The analysis of linear partial differential operators. I 2003

[15] Kalinin, Boris, Katok, Anatole Invariant measures for actions of higher rank abelian groups 2001 593 637

[16] Kalinin, Boris, Katok, Anatole Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori J. Mod. Dyn. 2007 123 146

[17] Kalinin, Boris, Sadovskaya, Victoria Global rigidity for totally nonsymplectic Anosov ℤ^{𝕜} actions Geom. Topol. 2006 929 954

[18] Kalinin, Boris, Sadovskaya, Victoria On the classification of resonance-free Anosov ℤ^{𝕜} actions Michigan Math. J. 2007 651 670

[19] Kalinin, Boris, Spatzier, Ralf On the classification of Cartan actions Geom. Funct. Anal. 2007 468 490

[20] Katok, Anatole, Hasselblatt, Boris Introduction to the modern theory of dynamical systems 1995

[21] Katok, A., Lewis, J. Local rigidity for certain groups of toral automorphisms Israel J. Math. 1991 203 241

[22] Katok, Anatole, Spatzier, Ralf J. First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity Inst. Hautes Études Sci. Publ. Math. 1994 131 156

[23] Katznelson, Yitzhak An introduction to harmonic analysis 1968

[24] Kirby, Robion C., Siebenmann, Laurence C. Foundational essays on topological manifolds, smoothings, and triangulations 1977

[25] Lind, D. A. Dynamical properties of quasihyperbolic toral automorphisms Ergodic Theory Dynam. Systems 1982 49 68

[26] Manning, Anthony There are no new Anosov diffeomorphisms on tori Amer. J. Math. 1974 422 429

[27] Margulis, Gregory A., Qian, Nantian Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices Ergodic Theory Dynam. Systems 2001 121 164

[28] Raghunathan, M. S. Discrete subgroups of Lie groups 1972

[29] Rodriguez Hertz, Federico Global rigidity of certain abelian actions by toral automorphisms J. Mod. Dyn. 2007 425 442

[30] Rauch, Jeffrey, Taylor, Michael Regularity of functions smooth along foliations, and elliptic regularity J. Funct. Anal. 2005 74 93

[31] Schreiber, Sebastian J. On growth rates of subadditive functions for semiflows J. Differential Equations 1998 334 350

[32] Starkov, A. N. The first cohomology group, mixing, and minimal sets of the commutative group of algebraic actions on a torus J. Math. Sci. (New York) 1999 2576 2582

[33] Wall, C. T. C. Surgery on compact manifolds 1970

[34] Walters, Peter Conjugacy properties of affine transformations of nilmanifolds Math. Systems Theory 1970 327 333

Cité par Sources :