@article{10_1090_S0894_0347_2012_00750_4,
author = {Pitt, Nigel},
title = {On an analogue of {Titchmarsh{\textquoteright}s} divisor problem for holomorphic cusp forms},
journal = {Journal of the American Mathematical Society},
pages = {735--776},
year = {2013},
volume = {26},
number = {3},
doi = {10.1090/S0894-0347-2012-00750-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00750-4/}
}
TY - JOUR AU - Pitt, Nigel TI - On an analogue of Titchmarsh’s divisor problem for holomorphic cusp forms JO - Journal of the American Mathematical Society PY - 2013 SP - 735 EP - 776 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00750-4/ DO - 10.1090/S0894-0347-2012-00750-4 ID - 10_1090_S0894_0347_2012_00750_4 ER -
%0 Journal Article %A Pitt, Nigel %T On an analogue of Titchmarsh’s divisor problem for holomorphic cusp forms %J Journal of the American Mathematical Society %D 2013 %P 735-776 %V 26 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00750-4/ %R 10.1090/S0894-0347-2012-00750-4 %F 10_1090_S0894_0347_2012_00750_4
Pitt, Nigel. On an analogue of Titchmarsh’s divisor problem for holomorphic cusp forms. Journal of the American Mathematical Society, Tome 26 (2013) no. 3, pp. 735-776. doi: 10.1090/S0894-0347-2012-00750-4
[1] Shifted convolution sums and subconvexity bounds for automorphic 𝐿-functions Int. Math. Res. Not. 2004 3905 3926
[2] , The spectral decomposition of shifted convolution sums Duke Math. J. 2008 321 339
[3] , , A Burgess-like subconvex bound for twisted 𝐿-functions Forum Math. 2007 61 105
[4] , , Primes in arithmetic progressions to large moduli Acta Math. 1986 203 251
[5] La conjecture de Weil. I Inst. Hautes Études Sci. Publ. Math. 1974 273 307
[6] , Kloosterman sums and Fourier coefficients of cusp forms Invent. Math. 1982/83 219 288
[7] , , A quadratic divisor problem Invent. Math. 1994 209 217
[8] Sur le problème des diviseurs de Titchmarsh J. Reine Angew. Math. 1985 51 76
[9] On various means involving the Fourier coefficients of cusp forms Math. Z. 1983 95 129
[10] Explicit estimates in the arithmetic theory of cusp forms and Poincaré series Math. Ann. 1983 9 20
[11] Footnote to the Titchmarsh-Linnik divisor problem Proc. Amer. Math. Soc. 1967 187 188
[12] An additive problem in the Fourier coefficients of cusp forms Math. Ann. 2003 347 365
[13] , Analytic number theory 2004
[14] Transformations of exponential sums 1992 263 270
[15] A variant of the circle method 1997 245 254
[16] The additive divisor problem and its analogs for Fourier coefficients of cusp forms. I Math. Z. 1996 435 461
[17] The additive divisor problem and its analogs for Fourier coefficients of cusp forms. II Math. Z. 1997 625 637
[18] Functoriality for the exterior square of 𝐺𝐿₄ and the symmetric fourth of 𝐺𝐿₂ J. Amer. Math. Soc. 2003 139 183
[19] The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums Mat. Sb. (N.S.) 1980
[20] The dispersion method in binary additive problems 1963
[21] Convolutions of automorphic L-series 1992 66
[22] On shifted convolutions of 𝜁³(𝑠) with automorphic 𝐿-functions Duke Math. J. 1995 383 406
[23] Sul problema dei divisori di Titchmarsh Boll. Un. Mat. Ital. (3) 1965 358 366
[24] Estimates for Rankin-Selberg 𝐿-functions and quantum unique ergodicity J. Funct. Anal. 2001 419 453
[25] Integrals of products of eigenfunctions Internat. Math. Res. Notices 1994
[26] On the estimation of Fourier coefficients of modular forms 1965 1 15
[27] Sommes trigonométriques sur les nombres premiers C. R. Acad. Sci. Paris Sér. A-B 1977
Cité par Sources :