On an analogue of Titchmarsh’s divisor problem for holomorphic cusp forms
Journal of the American Mathematical Society, Tome 26 (2013) no. 3, pp. 735-776 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

The Fourier coefficients $a(n)$ of a holomorphic cusp form for the modular group are considered at values $n=p-1$ for primes $p$ up to $X$, and their sum shown to be smaller than the trivial bound by a power of $X$. The same bound is also shown to hold for the sum of $\mu (n)a(n-1)$ for natural numbers $n$ up to $X$, where $\mu$ denotes the Möbius function. The proofs require establishing non-trivial bounds for sums of Kloosterman sums and shifted convolutions of the coefficients which are better in the ranges required than known estimates. These are then used to bound bilinear forms in $a(mn-1)$, which in conjunction with previous work of the author, slightly corrected here, proves the main results.
DOI : 10.1090/S0894-0347-2012-00750-4

Pitt, Nigel  1

1 Departamento de Matemática, Universidade de Brasília, DF 70910-900, Brazil
@article{10_1090_S0894_0347_2012_00750_4,
     author = {Pitt, Nigel},
     title = {On an analogue of {Titchmarsh{\textquoteright}s} divisor problem for holomorphic cusp forms},
     journal = {Journal of the American Mathematical Society},
     pages = {735--776},
     year = {2013},
     volume = {26},
     number = {3},
     doi = {10.1090/S0894-0347-2012-00750-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00750-4/}
}
TY  - JOUR
AU  - Pitt, Nigel
TI  - On an analogue of Titchmarsh’s divisor problem for holomorphic cusp forms
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 735
EP  - 776
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00750-4/
DO  - 10.1090/S0894-0347-2012-00750-4
ID  - 10_1090_S0894_0347_2012_00750_4
ER  - 
%0 Journal Article
%A Pitt, Nigel
%T On an analogue of Titchmarsh’s divisor problem for holomorphic cusp forms
%J Journal of the American Mathematical Society
%D 2013
%P 735-776
%V 26
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00750-4/
%R 10.1090/S0894-0347-2012-00750-4
%F 10_1090_S0894_0347_2012_00750_4
Pitt, Nigel. On an analogue of Titchmarsh’s divisor problem for holomorphic cusp forms. Journal of the American Mathematical Society, Tome 26 (2013) no. 3, pp. 735-776. doi: 10.1090/S0894-0347-2012-00750-4

[1] Blomer, Valentin Shifted convolution sums and subconvexity bounds for automorphic 𝐿-functions Int. Math. Res. Not. 2004 3905 3926

[2] Blomer, Valentin, Harcos, Gergely The spectral decomposition of shifted convolution sums Duke Math. J. 2008 321 339

[3] Blomer, V., Harcos, G., Michel, P. A Burgess-like subconvex bound for twisted 𝐿-functions Forum Math. 2007 61 105

[4] Bombieri, E., Friedlander, J. B., Iwaniec, H. Primes in arithmetic progressions to large moduli Acta Math. 1986 203 251

[5] Deligne, Pierre La conjecture de Weil. I Inst. Hautes Études Sci. Publ. Math. 1974 273 307

[6] Deshouillers, J.-M., Iwaniec, H. Kloosterman sums and Fourier coefficients of cusp forms Invent. Math. 1982/83 219 288

[7] Duke, W., Friedlander, J. B., Iwaniec, H. A quadratic divisor problem Invent. Math. 1994 209 217

[8] Fouvry, Étienne Sur le problème des diviseurs de Titchmarsh J. Reine Angew. Math. 1985 51 76

[9] Good, Anton On various means involving the Fourier coefficients of cusp forms Math. Z. 1983 95 129

[10] Hafner, James Lee Explicit estimates in the arithmetic theory of cusp forms and Poincaré series Math. Ann. 1983 9 20

[11] Halberstam, H. Footnote to the Titchmarsh-Linnik divisor problem Proc. Amer. Math. Soc. 1967 187 188

[12] Harcos, Gergely An additive problem in the Fourier coefficients of cusp forms Math. Ann. 2003 347 365

[13] Iwaniec, Henryk, Kowalski, Emmanuel Analytic number theory 2004

[14] Jutila, M. Transformations of exponential sums 1992 263 270

[15] Jutila, M. A variant of the circle method 1997 245 254

[16] Jutila, Matti The additive divisor problem and its analogs for Fourier coefficients of cusp forms. I Math. Z. 1996 435 461

[17] Jutila, Matti The additive divisor problem and its analogs for Fourier coefficients of cusp forms. II Math. Z. 1997 625 637

[18] Kim, Henry H. Functoriality for the exterior square of 𝐺𝐿₄ and the symmetric fourth of 𝐺𝐿₂ J. Amer. Math. Soc. 2003 139 183

[19] Kuznecov, N. V. The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums Mat. Sb. (N.S.) 1980

[20] Linnik, Ju. V. The dispersion method in binary additive problems 1963

[21] Pitt, Nigel John E. Convolutions of automorphic L-series 1992 66

[22] Pitt, Nigel J. E. On shifted convolutions of 𝜁³(𝑠) with automorphic 𝐿-functions Duke Math. J. 1995 383 406

[23] Rodriquez, Gaetano Sul problema dei divisori di Titchmarsh Boll. Un. Mat. Ital. (3) 1965 358 366

[24] Sarnak, Peter Estimates for Rankin-Selberg 𝐿-functions and quantum unique ergodicity J. Funct. Anal. 2001 419 453

[25] Sarnak, Peter Integrals of products of eigenfunctions Internat. Math. Res. Notices 1994

[26] Selberg, Atle On the estimation of Fourier coefficients of modular forms 1965 1 15

[27] Vaughan, Robert-C. Sommes trigonométriques sur les nombres premiers C. R. Acad. Sci. Paris Sér. A-B 1977

Cité par Sources :