Commutators on 𝐿_{𝑝}, 1≤𝑝ˆž
Journal of the American Mathematical Society, Tome 26 (2013) no. 1, pp. 101-127

Voir la notice de l'article provenant de la source American Mathematical Society

The operators on $L_p=L_p[0,1]$, $1\leq p\infty$, which are not commutators are those of the form $\lambda I + S$, where $\lambda \neq 0$ and $S$ belongs to the largest ideal in $\mathcal {L}(L_p)$. The proof involves new structural results for operators on $L_p$ which are of independent interest.
DOI : 10.1090/S0894-0347-2012-00748-6

Dosev, Detelin 1 ; Johnson, William 2 ; Schechtman, Gideon 1

1 Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel
2 Department of Mathematics, Texas A&M University, College Station, Texas 77843
@article{10_1090_S0894_0347_2012_00748_6,
     author = {Dosev, Detelin and Johnson, William and Schechtman, Gideon},
     title = {Commutators on {\dh}{\textquestiondown}_{{\dh}‘}, 1\^a‰{\textcurrency}{\dh}‘<\^aˆž},
     journal = {Journal of the American Mathematical Society},
     pages = {101--127},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2013},
     doi = {10.1090/S0894-0347-2012-00748-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00748-6/}
}
TY  - JOUR
AU  - Dosev, Detelin
AU  - Johnson, William
AU  - Schechtman, Gideon
TI  - Commutators on 𝐿_{𝑝}, 1≤𝑝<∞
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 101
EP  - 127
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00748-6/
DO  - 10.1090/S0894-0347-2012-00748-6
ID  - 10_1090_S0894_0347_2012_00748_6
ER  - 
%0 Journal Article
%A Dosev, Detelin
%A Johnson, William
%A Schechtman, Gideon
%T Commutators on 𝐿_{𝑝}, 1≤𝑝<∞
%J Journal of the American Mathematical Society
%D 2013
%P 101-127
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00748-6/
%R 10.1090/S0894-0347-2012-00748-6
%F 10_1090_S0894_0347_2012_00748_6
Dosev, Detelin; Johnson, William; Schechtman, Gideon. Commutators on 𝐿_{𝑝}, 1≤𝑝<∞. Journal of the American Mathematical Society, Tome 26 (2013) no. 1, pp. 101-127. doi: 10.1090/S0894-0347-2012-00748-6

[1] Apostol, Constantin Commutators on 𝑙^{𝑝}-spaces Rev. Roumaine Math. Pures Appl. 1972 1513 1534

[2] Apostol, Constantin Commutators on 𝑐₀-spaces and on 𝑙^{∞}-spaces Rev. Roumaine Math. Pures Appl. 1973 1025 1032

[3] Brown, Arlen, Pearcy, Carl Structure of commutators of operators Ann. of Math. (2) 1965 112 127

[4] Dosev, Detelin T. Commutators on 𝑙₁ J. Funct. Anal. 2009 3490 3509

[5] Dosev, D., Johnson, W. B. Commutators on ℓ_{∞} Bull. Lond. Math. Soc. 2010 155 169

[6] Enflo, P., Starbird, T. W. Subspaces of 𝐿¹ containing 𝐿¹ Studia Math. 1979 203 225

[7] Gamlen, J. L. B., Gaudet, R. J. On subsequences of the Haar system in 𝐿_{𝑝} [1,1](1≤𝑝≤∞) Israel J. Math. 1973 404 413

[8] Johnson, W. B., Maurey, B., Schechtman, G., Tzafriri, L. Symmetric structures in Banach spaces Mem. Amer. Math. Soc. 1979

[9] Kalton, N. J. The endomorphisms of 𝐿_{𝑝}(0≤𝑝≤𝑖) Indiana Univ. Math. J. 1978 353 381

[10] Lindenstrauss, Joram, Tzafriri, Lior Classical Banach spaces. I 1977

[11] Nikiå¡In, E. M. Resonance theorems and superlinear operators Uspehi Mat. Nauk 1970 129 191

[12] Rosenthal, Haskell P. Embeddings of 𝐿¹ in 𝐿¹ 1984 335 349

[13] Wintner, Aurel The unboundedness of quantum-mechanical matrices Phys. Rev. (2) 1947 738 739

Cité par Sources :