Pointwise 𝐶^{2,𝛼} estimates at the boundary for the Monge-Ampère equation
Journal of the American Mathematical Society, Tome 26 (2013) no. 1, pp. 63-99

Voir la notice de l'article provenant de la source American Mathematical Society

We prove a localization property of boundary sections for solutions to the Monge-Ampère equation. As a consequence we obtain pointwise $C^{2,\alpha }$ estimates at boundary points under appropriate local conditions on the right-hand side and boundary data.
DOI : 10.1090/S0894-0347-2012-00747-4

Savin, O. 1

1 Department of Mathematics, Columbia University, New York, New York 10027
@article{10_1090_S0894_0347_2012_00747_4,
     author = {Savin, O.},
     title = {Pointwise {\dh}{\textparagraph}^{2,{\dh}›{\textonequarter}} estimates at the boundary for the {Monge-Amp\~A{\textasciidieresis}re} equation},
     journal = {Journal of the American Mathematical Society},
     pages = {63--99},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2013},
     doi = {10.1090/S0894-0347-2012-00747-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00747-4/}
}
TY  - JOUR
AU  - Savin, O.
TI  - Pointwise 𝐶^{2,𝛼} estimates at the boundary for the Monge-Ampère equation
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 63
EP  - 99
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00747-4/
DO  - 10.1090/S0894-0347-2012-00747-4
ID  - 10_1090_S0894_0347_2012_00747_4
ER  - 
%0 Journal Article
%A Savin, O.
%T Pointwise 𝐶^{2,𝛼} estimates at the boundary for the Monge-Ampère equation
%J Journal of the American Mathematical Society
%D 2013
%P 63-99
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00747-4/
%R 10.1090/S0894-0347-2012-00747-4
%F 10_1090_S0894_0347_2012_00747_4
Savin, O. Pointwise 𝐶^{2,𝛼} estimates at the boundary for the Monge-Ampère equation. Journal of the American Mathematical Society, Tome 26 (2013) no. 1, pp. 63-99. doi: 10.1090/S0894-0347-2012-00747-4

[1] Caffarelli, Luis A., Cabrã©, Xavier Fully nonlinear elliptic equations 1995

[2] Caffarelli, L., Nirenberg, L., Spruck, J. The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation Comm. Pure Appl. Math. 1984 369 402

[3] Caffarelli, L. A. A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity Ann. of Math. (2) 1990 129 134

[4] Caffarelli, Luis A. Interior 𝑊^{2,𝑝} estimates for solutions of the Monge-Ampère equation Ann. of Math. (2) 1990 135 150

[5] IvoäKina, N. M. A priori estimate of |𝑢|_{𝐶₂(\overlineΩ)} of convex solutions of the Dirichlet problem for the Monge-Ampère equation Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 1980

[6] Jian, Huai-Yu, Wang, Xu-Jia Continuity estimates for the Monge-Ampère equation SIAM J. Math. Anal. 2007 608 626

[7] Krylov, N. V. Boundedly inhomogeneous elliptic and parabolic equations in a domain Izv. Akad. Nauk SSSR Ser. Mat. 1983 75 108

[8] Trudinger, Neil S., Wang, Xu-Jia Boundary regularity for the Monge-Ampère and affine maximal surface equations Ann. of Math. (2) 2008 993 1028

[9] Wang, Xu-Jia Regularity for Monge-Ampère equation near the boundary Analysis 1996 101 107

Cité par Sources :