Honeycomb lattice potentials and Dirac points
Journal of the American Mathematical Society, Tome 25 (2012) no. 4, pp. 1169-1220

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that the two-dimensional Schrödinger operator with a potential having the symmetry of a honeycomb structure has dispersion surfaces with conical singularities (Dirac points) at the vertices of its Brillouin zone. No assumptions are made on the size of the potential. We then prove the robustness of such conical singularities to a restrictive class of perturbations, which break the honeycomb lattice symmetry. General small perturbations of potentials with Dirac points do not have Dirac points; their dispersion surfaces are smooth. The presence of Dirac points in honeycomb structures is associated with many novel electronic and optical properties of materials such as graphene.
DOI : 10.1090/S0894-0347-2012-00745-0

Fefferman, Charles 1 ; Weinstein, Michael 2

1 Department of Mathematics, Princeton University, Fine Hall, Princeton, New Jersey 08544
2 Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
@article{10_1090_S0894_0347_2012_00745_0,
     author = {Fefferman, Charles and Weinstein, Michael},
     title = {Honeycomb lattice potentials and {Dirac} points},
     journal = {Journal of the American Mathematical Society},
     pages = {1169--1220},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2012},
     doi = {10.1090/S0894-0347-2012-00745-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00745-0/}
}
TY  - JOUR
AU  - Fefferman, Charles
AU  - Weinstein, Michael
TI  - Honeycomb lattice potentials and Dirac points
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 1169
EP  - 1220
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00745-0/
DO  - 10.1090/S0894-0347-2012-00745-0
ID  - 10_1090_S0894_0347_2012_00745_0
ER  - 
%0 Journal Article
%A Fefferman, Charles
%A Weinstein, Michael
%T Honeycomb lattice potentials and Dirac points
%J Journal of the American Mathematical Society
%D 2012
%P 1169-1220
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00745-0/
%R 10.1090/S0894-0347-2012-00745-0
%F 10_1090_S0894_0347_2012_00745_0
Fefferman, Charles; Weinstein, Michael. Honeycomb lattice potentials and Dirac points. Journal of the American Mathematical Society, Tome 25 (2012) no. 4, pp. 1169-1220. doi: 10.1090/S0894-0347-2012-00745-0

[1] Avron, J. E., Simon, B. Analytic properties of band functions Ann. Physics 1978 85 101

[2] Grushin, V. V. Application of the multiparameter theory of perturbations of Fredholm operators to Bloch functions Mat. Zametki 2009 819 828

[3] Herstein, I. N. Topics in algebra 1964

[4] Jost, R., Pais, A. On the scattering of a particle by a static potential Phys. Rev. (2) 1951 840 851

[5] Krantz, Steven G. Function theory of several complex variables 2001

[6] Kuchment, Peter, Post, Olaf On the spectra of carbon nano-structures Comm. Math. Phys. 2007 805 826

[7] Newton, Roger G. Relation between the three-dimensional Fredholm determinant and the Jost functions J. Mathematical Phys. 1972 880 883

[8] Reed, Michael, Simon, Barry Methods of modern mathematical physics. IV. Analysis of operators 1978

[9] Simon, Barry Trace ideals and their applications 2005

Cité par Sources :