Algebraic 𝐾-theory via binary complexes
Journal of the American Mathematical Society, Tome 25 (2012) no. 4, pp. 1149-1167

Voir la notice de l'article provenant de la source American Mathematical Society

Motivated by work of Nenashev on $K_1$, we introduce acyclic binary multicomplexes and use them to provide generators and relations for the Quillen $K$-groups of an arbitrary exact category.
@article{10_1090_S0894_0347_2012_00743_7,
     author = {Grayson, Daniel},
     title = {Algebraic {\dh}{\textthreequarters}-theory via binary complexes},
     journal = {Journal of the American Mathematical Society},
     pages = {1149--1167},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2012},
     doi = {10.1090/S0894-0347-2012-00743-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00743-7/}
}
TY  - JOUR
AU  - Grayson, Daniel
TI  - Algebraic 𝐾-theory via binary complexes
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 1149
EP  - 1167
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00743-7/
DO  - 10.1090/S0894-0347-2012-00743-7
ID  - 10_1090_S0894_0347_2012_00743_7
ER  - 
%0 Journal Article
%A Grayson, Daniel
%T Algebraic 𝐾-theory via binary complexes
%J Journal of the American Mathematical Society
%D 2012
%P 1149-1167
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00743-7/
%R 10.1090/S0894-0347-2012-00743-7
%F 10_1090_S0894_0347_2012_00743_7
Grayson, Daniel. Algebraic 𝐾-theory via binary complexes. Journal of the American Mathematical Society, Tome 25 (2012) no. 4, pp. 1149-1167. doi: 10.1090/S0894-0347-2012-00743-7

[1] Bousfield, A. K., Friedlander, E. M. Homotopy theory of Γ-spaces, spectra, and bisimplicial sets 1978 80 130

[2] Grayson, Daniel R. Localization for flat modules in algebraic 𝐾-theory J. Algebra 1979 463 496

[3] Grayson, Daniel R. Exact sequences in algebraic 𝐾-theory Illinois J. Math. 1987 598 617

[4] Grayson, Daniel R. Adams operations on higher 𝐾-theory 𝐾-Theory 1992 97 111

[5] Grayson, Daniel R. Weight filtrations via commuting automorphisms 𝐾-Theory 1995 139 172

[6] Milnor, John Introduction to algebraic 𝐾-theory 1971

[7] Nenashev, Alexander Double short exact sequences produce all elements of Quillen’s 𝐾₁ 1996 151 160

[8] Nenashev, Alexander Double short exact sequences and 𝐾₁ of an exact category 𝐾-Theory 1998 23 41

[9] Nenashev, A. 𝐾₁ by generators and relations J. Pure Appl. Algebra 1998 195 212

[10] Quillen, Daniel Higher algebraic 𝐾-theory. I 1973 85 147

[11] Schlichting, Marco Higher algebraic 𝐾-theory 2011 167 241

[12] Sherman, Clayton On 𝐾₁ of an abelian category J. Algebra 1994 568 582

[13] Sherman, Clayton On 𝐾₁ of an exact category 𝐾-Theory 1998 1 22

[14] Stein, Michael R., Dennis, R. Keith 𝐾₂ of radical ideals and semi-local rings revisited 1973 281 303

[15] Thomason, R. W., Trobaugh, Thomas Higher algebraic 𝐾-theory of schemes and of derived categories 1990 247 435

[16] Waldhausen, Friedhelm Algebraic 𝐾-theory of spaces 1985 318 419

Cité par Sources :