The geometry of the disk complex
Journal of the American Mathematical Society, Tome 26 (2013) no. 1, pp. 1-62

Voir la notice de l'article provenant de la source American Mathematical Society

We give a distance estimate for the disk complex. We use the distance estimate to prove that the disk complex is Gromov hyperbolic. As another application of our techniques, we find an algorithm which computes the Hempel distance of a Heegaard splitting, up to an error depending only on the genus.
DOI : 10.1090/S0894-0347-2012-00742-5

Masur, Howard 1 ; Schleimer, Saul 2

1 Department of Mathematics, University of Chicago, Chicago, Illinois 60637
2 Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
@article{10_1090_S0894_0347_2012_00742_5,
     author = {Masur, Howard and Schleimer, Saul},
     title = {The geometry of the disk complex},
     journal = {Journal of the American Mathematical Society},
     pages = {1--62},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2013},
     doi = {10.1090/S0894-0347-2012-00742-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00742-5/}
}
TY  - JOUR
AU  - Masur, Howard
AU  - Schleimer, Saul
TI  - The geometry of the disk complex
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 1
EP  - 62
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00742-5/
DO  - 10.1090/S0894-0347-2012-00742-5
ID  - 10_1090_S0894_0347_2012_00742_5
ER  - 
%0 Journal Article
%A Masur, Howard
%A Schleimer, Saul
%T The geometry of the disk complex
%J Journal of the American Mathematical Society
%D 2013
%P 1-62
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00742-5/
%R 10.1090/S0894-0347-2012-00742-5
%F 10_1090_S0894_0347_2012_00742_5
Masur, Howard; Schleimer, Saul. The geometry of the disk complex. Journal of the American Mathematical Society, Tome 26 (2013) no. 1, pp. 1-62. doi: 10.1090/S0894-0347-2012-00742-5

[1] Behrstock, Jason, Druå£U, Cornelia, Mosher, Lee Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity Math. Ann. 2009 543 595

[2] Bestvina, Mladen, Fujiwara, Koji Quasi-homomorphisms on mapping class groups Glas. Mat. Ser. III 2007 213 236

[3] Birman, Joan S. The topology of 3-manifolds, Heegaard distance and the mapping class group of a 2-manifold 2006 133 149

[4] Bonahon, Francis Cobordism of automorphisms of surfaces Ann. Sci. École Norm. Sup. (4) 1983 237 270

[5] Bowditch, B. H. A short proof that a subquadratic isoperimetric inequality implies a linear one Michigan Math. J. 1995 103 107

[6] Bowditch, Brian H. Intersection numbers and the hyperbolicity of the curve complex J. Reine Angew. Math. 2006 105 129

[7] Brendle, Tara E., Margalit, Dan Commensurations of the Johnson kernel Geom. Topol. 2004 1361 1384

[8] Bridson, Martin R., Haefliger, Andrã© Metric spaces of non-positive curvature 1999

[9] Brock, Jeffrey F. The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores J. Amer. Math. Soc. 2003 495 535

[10] Cavicchioli, Alberto, Spaggiari, Fulvia A note on irreducible Heegaard diagrams Int. J. Math. Math. Sci. 2006

[11] Choi, Young-Eun, Rafi, Kasra Comparison between Teichmüller and Lipschitz metrics J. Lond. Math. Soc. (2) 2007 739 756

[12] Ciå¡Ang, H. Simple path systems on full pretzels Mat. Sb. (N.S.) 1965 230 239

[13] Coornaert, M., Delzant, T., Papadopoulos, A. Géométrie et théorie des groupes 1990

[14] Gilman, Robert H. The geometry of cycles in the Cayley diagram of a group 1994 331 340

[15] Gilman, Robert H. On the definition of word hyperbolic groups Math. Z. 2002 529 541

[16] Gordon, C. Mca. 3-dimensional topology up to 1960 1999 449 489

[17] Gromov, M. Hyperbolic groups 1987 75 263

[18] Haken, Wolfgang Various aspects of the three-dimensional Poincaré problem 1970 140 152

[19] Hamenstã¤Dt, Ursula Geometry of the mapping class groups. I. Boundary amenability Invent. Math. 2009 545 609

[20] Hartshorn, Kevin Heegaard splittings of Haken manifolds have bounded distance Pacific J. Math. 2002 61 75

[21] Harvey, W. J. Boundary structure of the modular group 1981 245 251

[22] Hatcher, A., Thurston, W. A presentation for the mapping class group of a closed orientable surface Topology 1980 221 237

[23] Hempel, John 3-Manifolds 1976

[24] Hempel, John 3-manifolds as viewed from the curve complex Topology 2001 631 657

[25] Hubbard, John Hamal Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1 2006

[26] Kobayashi, Tsuyoshi Heights of simple loops and pseudo-Anosov homeomorphisms 1988 327 338

[27] Mangahas, Johanna Uniform uniform exponential growth of subgroups of the mapping class group Geom. Funct. Anal. 2010 1468 1480

[28] Masur, Howard A., Minsky, Yair N. Geometry of the complex of curves. I. Hyperbolicity Invent. Math. 1999 103 149

[29] Masur, H. A., Minsky, Y. N. Geometry of the complex of curves. II. Hierarchical structure Geom. Funct. Anal. 2000 902 974

[30] Masur, Howard A., Minsky, Yair N. Quasiconvexity in the curve complex 2004 309 320

[31] Mccullough, Darryl Virtually geometrically finite mapping class groups of 3-manifolds J. Differential Geom. 1991 1 65

[32] Minsky, Yair The classification of Kleinian surface groups. I. Models and bounds Ann. of Math. (2) 2010 1 107

[33] Nag, Subhashis The complex analytic theory of Teichmüller spaces 1988

[34] Penner, R. C., Harer, J. L. Combinatorics of train tracks 1992

[35] Penner, Robert C. A construction of pseudo-Anosov homeomorphisms Trans. Amer. Math. Soc. 1988 179 197

[36] Rafi, Kasra A combinatorial model for the Teichmüller metric Geom. Funct. Anal. 2007 936 959

[37] Rafi, Kasra, Schleimer, Saul Covers and the curve complex Geom. Topol. 2009 2141 2162

[38] Rolfsen, Dale Knots and links 1990

[39] Scharlemann, Martin The complex of curves on nonorientable surfaces J. London Math. Soc. (2) 1982 171 184

[40] Thurston, William P. On the geometry and dynamics of diffeomorphisms of surfaces Bull. Amer. Math. Soc. (N.S.) 1988 417 431

[41] Waldhausen, Friedhelm Some problems on 3-manifolds 1978 313 322

[42] Zieschang, Heiner On Heegaard diagrams of 3-manifolds Astérisque 1988

Cité par Sources :