Brauer-Siegel for arithmetic tori and lower bounds for Galois orbits of special points
Journal of the American Mathematical Society, Tome 25 (2012) no. 4, pp. 1091-1117

Voir la notice de l'article provenant de la source American Mathematical Society

Shyr derived an analogue of Dirichlet’s class number formula for arithmetic tori. We use this formula to derive a Brauer-Siegel formula for tori, relating the discriminant of a torus to the product of its regulator and class number. We apply this formula to derive asymptotics and lower bounds for Galois orbits of CM points in the Siegel modular variety $A_{g,1}$. Specifically, we ask that the sizes of these orbits grow like a power of the discriminant of the underlying endomorphism algebra. We prove this unconditionally in the case $g\leq 6$, and for all $g$ under the Generalized Riemann Hypothesis for CM fields. Along the way we derive a general transfer principle for torsion in ideal class groups of number fields.
DOI : 10.1090/S0894-0347-2012-00739-5

Tsimerman, Jacob 1, 2

1 Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544-1000
2 Department of Mathematics, Faculty of Arts & Sciences, Harvard University, One Oxford Street, Cambridge MA 02138
@article{10_1090_S0894_0347_2012_00739_5,
     author = {Tsimerman, Jacob},
     title = {Brauer-Siegel for arithmetic tori and lower bounds for {Galois} orbits of special points},
     journal = {Journal of the American Mathematical Society},
     pages = {1091--1117},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2012},
     doi = {10.1090/S0894-0347-2012-00739-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00739-5/}
}
TY  - JOUR
AU  - Tsimerman, Jacob
TI  - Brauer-Siegel for arithmetic tori and lower bounds for Galois orbits of special points
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 1091
EP  - 1117
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00739-5/
DO  - 10.1090/S0894-0347-2012-00739-5
ID  - 10_1090_S0894_0347_2012_00739_5
ER  - 
%0 Journal Article
%A Tsimerman, Jacob
%T Brauer-Siegel for arithmetic tori and lower bounds for Galois orbits of special points
%J Journal of the American Mathematical Society
%D 2012
%P 1091-1117
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00739-5/
%R 10.1090/S0894-0347-2012-00739-5
%F 10_1090_S0894_0347_2012_00739_5
Tsimerman, Jacob. Brauer-Siegel for arithmetic tori and lower bounds for Galois orbits of special points. Journal of the American Mathematical Society, Tome 25 (2012) no. 4, pp. 1091-1117. doi: 10.1090/S0894-0347-2012-00739-5

[1] Brumer, Armand, Silverman, Joseph H. The number of elliptic curves over 𝐐 with conductor 𝐍 Manuscripta Math. 1996 95 102

[2] Edixhoven, Bas On the André-Oort conjecture for Hilbert modular surfaces 2001 133 155

[3] Edixhoven, S. J., Moonen, B. J. J., Oort, F. Open problems in algebraic geometry Bull. Sci. Math. 2001 1 22

[4] Ellenberg, Jordan S., Venkatesh, Akshay Reflection principles and bounds for class group torsion Int. Math. Res. Not. IMRN 2007

[5] Gerth, Frank, Iii Ranks of 3-class groups of non-Galois cubic fields Acta Arith. 1976 307 322

[6] Nakayama, Tadasi Cohomology of class field theory and tensor product modules. I Ann. of Math. (2) 1957 255 267

[7] Ono, Takashi On the Tamagawa number of algebraic tori Ann. of Math. (2) 1963 47 73

[8] Ono, Takashi Arithmetic of algebraic tori Ann. of Math. (2) 1961 101 139

[9] Platonov, Vladimir, Rapinchuk, Andrei Algebraic groups and number theory 1994

[10] Shimura, Goro Abelian varieties with complex multiplication and modular functions 1998

[11] Shyr, Jih Min On some class number relations of algebraic tori Michigan Math. J. 1977 365 377

[12] Yafaev, Andrei A conjecture of Yves André’s Duke Math. J. 2006 393 407

[13] Zhang, Shou-Wu Equidistribution of CM-points on quaternion Shimura varieties Int. Math. Res. Not. 2005 3657 3689

Cité par Sources :