Voir la notice de l'article provenant de la source American Mathematical Society
Cohn, Henry 1 ; Woo, Jeechul 2
@article{10_1090_S0894_0347_2012_00737_1,
author = {Cohn, Henry and Woo, Jeechul},
title = {Three-point bounds for energy minimization},
journal = {Journal of the American Mathematical Society},
pages = {929--958},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {2012},
doi = {10.1090/S0894-0347-2012-00737-1},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00737-1/}
}
TY - JOUR AU - Cohn, Henry AU - Woo, Jeechul TI - Three-point bounds for energy minimization JO - Journal of the American Mathematical Society PY - 2012 SP - 929 EP - 958 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00737-1/ DO - 10.1090/S0894-0347-2012-00737-1 ID - 10_1090_S0894_0347_2012_00737_1 ER -
%0 Journal Article %A Cohn, Henry %A Woo, Jeechul %T Three-point bounds for energy minimization %J Journal of the American Mathematical Society %D 2012 %P 929-958 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00737-1/ %R 10.1090/S0894-0347-2012-00737-1 %F 10_1090_S0894_0347_2012_00737_1
Cohn, Henry; Woo, Jeechul. Three-point bounds for energy minimization. Journal of the American Mathematical Society, Tome 25 (2012) no. 4, pp. 929-958. doi: 10.1090/S0894-0347-2012-00737-1
[1] A spherical code Uspekhi Mat. Nauk 1999 255 256
[2] , , Special functions 1999
[3] Linear programming bounds for codes in Grassmannian spaces IEEE Trans. Inform. Theory 2006 2111 2125
[4] , New upper bounds for kissing numbers from semidefinite programming J. Amer. Math. Soc. 2008 909 924
[5] , Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps European J. Combin. 2009 625 637
[6] , Optimality and uniqueness of the (4,10,1/6) spherical code J. Combin. Theory Ser. A 2009 195 204
[7] , , , , , Experimental study of energy-minimizing point configurations on spheres Experiment. Math. 2009 257 283
[8] Hilbert distances and positive definite functions Ann. of Math. (2) 1941 647 656
[9] CSDP, a C library for semidefinite programming Optim. Methods Softw. 1999 613 623
[10] Finite packing and covering 2004
[11] Order and disorder in energy minimization 2010 2416 2443
[12] , , , The ð·â root system is not universally optimal Experiment. Math. 2007 313 320
[13] , , , Point configurations that are asymmetric yet balanced Proc. Amer. Math. Soc. 2010 2863 2872
[14] , Universally optimal distribution of points on spheres J. Amer. Math. Soc. 2007 99 148
[15] , , Packing lines, planes, etc.: packings in Grassmannian spaces Experiment. Math. 1996 139 159
[16] , Sphere packings, lattices and groups 1999
[17] Bounds for unrestricted codes, by linear programming Philips Res. Rep. 1972 272 289
[18] , McLarenâs improved snub cube and other new spherical designs in three dimensions Discrete Comput. Geom. 1996 429 441
[19] ðð¿â(ð ) 1985
[20] Equilibrium of sets of particles on a sphere Math. Gaz. 1957 81 90
[21] Bounds of the maximal capacity of a code with a limited scalar product modulus Dokl. Akad. Nauk SSSR 1982 1303 1308
[22] Designs as maximum codes in polynomial metric spaces Acta Appl. Math. 1992 1 82
[23] Positive polynomials and sums of squares 2008
[24] Improved Delsarte bounds for spherical codes in small dimensions J. Combin. Theory Ser. A 2007 1133 1147
[25] Positive polynomials on compact semi-algebraic sets Indiana Univ. Math. J. 1993 969 984
[26] The closest packing of spherical caps in ð dimensions Proc. Glasgow Math. Assoc. 1955 139 144
[27] Positive definite functions on spheres Duke Math. J. 1942 96 108
[28] New code upper bounds from the Terwilliger algebra and semidefinite programming IEEE Trans. Inform. Theory 2005 2859 2866
[29] , Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz? Math. Ann. 1951 96 124
[30] The Laplace Transform 1941
[31] Minimum potential energy of a point system of charges Diskret. Mat. 1992 115 121
Cité par Sources :