Microscopic derivation of Ginzburg-Landau theory
Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 667-713

Voir la notice de l'article provenant de la source American Mathematical Society

We give the first rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Close to the critical temperature, GL arises as an effective theory on the macroscopic scale. The relevant scaling limit is semiclassical in nature, and semiclassical analysis, with minimal regularity assumptions, plays an important part in our proof.
DOI : 10.1090/S0894-0347-2012-00735-8

Frank, Rupert 1 ; Hainzl, Christian 2 ; Seiringer, Robert 3 ; Solovej, Jan 4

1 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
2 Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
3 Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada
4 Department of Mathematics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
@article{10_1090_S0894_0347_2012_00735_8,
     author = {Frank, Rupert and Hainzl, Christian and Seiringer, Robert and Solovej, Jan},
     title = {Microscopic derivation of {Ginzburg-Landau} theory},
     journal = {Journal of the American Mathematical Society},
     pages = {667--713},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2012},
     doi = {10.1090/S0894-0347-2012-00735-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00735-8/}
}
TY  - JOUR
AU  - Frank, Rupert
AU  - Hainzl, Christian
AU  - Seiringer, Robert
AU  - Solovej, Jan
TI  - Microscopic derivation of Ginzburg-Landau theory
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 667
EP  - 713
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00735-8/
DO  - 10.1090/S0894-0347-2012-00735-8
ID  - 10_1090_S0894_0347_2012_00735_8
ER  - 
%0 Journal Article
%A Frank, Rupert
%A Hainzl, Christian
%A Seiringer, Robert
%A Solovej, Jan
%T Microscopic derivation of Ginzburg-Landau theory
%J Journal of the American Mathematical Society
%D 2012
%P 667-713
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00735-8/
%R 10.1090/S0894-0347-2012-00735-8
%F 10_1090_S0894_0347_2012_00735_8
Frank, Rupert; Hainzl, Christian; Seiringer, Robert; Solovej, Jan. Microscopic derivation of Ginzburg-Landau theory. Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 667-713. doi: 10.1090/S0894-0347-2012-00735-8

[1] Abramowitz, Milton, Stegun, Irene A. Handbook of mathematical functions with formulas, graphs, and mathematical tables 1964

[2] Bardeen, J., Cooper, L. N., Schrieffer, J. R. Theory of superconductivity Phys. Rev. (2) 1957 1175 1204

[3] Donoghue, William F., Jr. Monotone matrix functions and analytic continuation 1974

[4] Fournais, Sã¸Ren, Helffer, Bernard Spectral methods in surface superconductivity 2010

[5] Frank, Rupert L., Hainzl, Christian, Naboko, Serguei, Seiringer, Robert The critical temperature for the BCS equation at weak coupling J. Geom. Anal. 2007 559 567

[6] Gustafson, S., Sigal, I. M., Tzaneteas, T. Statics and dynamics of magnetic vortices and of Nielsen-Olesen (Nambu) strings J. Math. Phys. 2010

[7] Hainzl, Christian, Hamza, Eman, Seiringer, Robert, Solovej, Jan Philip The BCS functional for general pair interactions Comm. Math. Phys. 2008 349 367

[8] Hainzl, Christian, Lewin, Mathieu, Seiringer, Robert A nonlinear model for relativistic electrons at positive temperature Rev. Math. Phys. 2008 1283 1307

[9] Hainzl, Christian, Lewin, Mathieu, Sã©Rã©, ÉRic Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation Comm. Math. Phys. 2005 515 562

[10] Hainzl, Christian, Seiringer, Robert The BCS critical temperature for potentials with negative scattering length Lett. Math. Phys. 2008 99 107

[11] Hainzl, Christian, Seiringer, Robert Spectral properties of the BCS gap equation of superfluidity 2008 117 136

[12] Helffer, B., Robert, D. Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles J. Funct. Anal. 1983 246 268

[13] Modern trends in the theory of condensed matter 1980

[14] Lieb, Elliott H., Loss, Michael Analysis 2001

[15] Lieb, Elliott H., Seiringer, Robert The stability of matter in quantum mechanics 2010

[16] Reed, Michael, Simon, Barry Methods of modern mathematical physics. IV. Analysis of operators 1978

[17] Robert, Didier Autour de l’approximation semi-classique 1987

[18] Sandier, Etienne, Serfaty, Sylvia Vortices in the magnetic Ginzburg-Landau model 2007

[19] Simon, Barry Trace ideals and their applications 2005

[20] Thirring, Walter Quantum mathematical physics 2002

Cité par Sources :