Voir la notice de l'article provenant de la source American Mathematical Society
Frank, Rupert 1 ; Hainzl, Christian 2 ; Seiringer, Robert 3 ; Solovej, Jan 4
@article{10_1090_S0894_0347_2012_00735_8,
     author = {Frank, Rupert and Hainzl, Christian and Seiringer, Robert and Solovej, Jan},
     title = {Microscopic derivation of {Ginzburg-Landau} theory},
     journal = {Journal of the American Mathematical Society},
     pages = {667--713},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2012},
     doi = {10.1090/S0894-0347-2012-00735-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00735-8/}
}
                      
                      
                    TY - JOUR AU - Frank, Rupert AU - Hainzl, Christian AU - Seiringer, Robert AU - Solovej, Jan TI - Microscopic derivation of Ginzburg-Landau theory JO - Journal of the American Mathematical Society PY - 2012 SP - 667 EP - 713 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00735-8/ DO - 10.1090/S0894-0347-2012-00735-8 ID - 10_1090_S0894_0347_2012_00735_8 ER -
%0 Journal Article %A Frank, Rupert %A Hainzl, Christian %A Seiringer, Robert %A Solovej, Jan %T Microscopic derivation of Ginzburg-Landau theory %J Journal of the American Mathematical Society %D 2012 %P 667-713 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00735-8/ %R 10.1090/S0894-0347-2012-00735-8 %F 10_1090_S0894_0347_2012_00735_8
Frank, Rupert; Hainzl, Christian; Seiringer, Robert; Solovej, Jan. Microscopic derivation of Ginzburg-Landau theory. Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 667-713. doi: 10.1090/S0894-0347-2012-00735-8
[1] , Handbook of mathematical functions with formulas, graphs, and mathematical tables 1964
[2] , , Theory of superconductivity Phys. Rev. (2) 1957 1175 1204
[3] Monotone matrix functions and analytic continuation 1974
[4] , Spectral methods in surface superconductivity 2010
[5] , , , The critical temperature for the BCS equation at weak coupling J. Geom. Anal. 2007 559 567
[6] , , Statics and dynamics of magnetic vortices and of Nielsen-Olesen (Nambu) strings J. Math. Phys. 2010
[7] , , , The BCS functional for general pair interactions Comm. Math. Phys. 2008 349 367
[8] , , A nonlinear model for relativistic electrons at positive temperature Rev. Math. Phys. 2008 1283 1307
[9] , , Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation Comm. Math. Phys. 2005 515 562
[10] , The BCS critical temperature for potentials with negative scattering length Lett. Math. Phys. 2008 99 107
[11] , Spectral properties of the BCS gap equation of superfluidity 2008 117 136
[12] , Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles J. Funct. Anal. 1983 246 268
[13] Modern trends in the theory of condensed matter 1980
[14] , Analysis 2001
[15] , The stability of matter in quantum mechanics 2010
[16] , Methods of modern mathematical physics. IV. Analysis of operators 1978
[17] Autour de lâapproximation semi-classique 1987
[18] , Vortices in the magnetic Ginzburg-Landau model 2007
[19] Trace ideals and their applications 2005
[20] Quantum mathematical physics 2002
Cité par Sources :
