Nonnegative polynomials and sums of squares
Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 617-635

Voir la notice de l'article provenant de la source American Mathematical Society

In the smallest cases where there exist nonnegative polynomials that are not sums of squares we present a complete explanation of this distinction. The fundamental reason that the cone of sums of squares is strictly contained in the cone of nonnegative polynomials is that polynomials of degree $d$ satisfy certain linear relations, known as the Cayley-Bacharach relations, which are not satisfied by polynomials of full degree $2d$. For any nonnegative polynomial that is not a sum of squares we can write down a linear inequality coming from a Cayley-Bacharach relation that certifies this fact. We also characterize strictly positive sums of squares that lie on the boundary of the cone of sums of squares and extreme rays of the cone dual to the cone of sums of squares.
DOI : 10.1090/S0894-0347-2012-00733-4

Blekherman, Grigoriy 1

1 School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, Georgia 30332-0160
@article{10_1090_S0894_0347_2012_00733_4,
     author = {Blekherman, Grigoriy},
     title = {Nonnegative polynomials and sums of squares},
     journal = {Journal of the American Mathematical Society},
     pages = {617--635},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2012},
     doi = {10.1090/S0894-0347-2012-00733-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00733-4/}
}
TY  - JOUR
AU  - Blekherman, Grigoriy
TI  - Nonnegative polynomials and sums of squares
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 617
EP  - 635
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00733-4/
DO  - 10.1090/S0894-0347-2012-00733-4
ID  - 10_1090_S0894_0347_2012_00733_4
ER  - 
%0 Journal Article
%A Blekherman, Grigoriy
%T Nonnegative polynomials and sums of squares
%J Journal of the American Mathematical Society
%D 2012
%P 617-635
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00733-4/
%R 10.1090/S0894-0347-2012-00733-4
%F 10_1090_S0894_0347_2012_00733_4
Blekherman, Grigoriy. Nonnegative polynomials and sums of squares. Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 617-635. doi: 10.1090/S0894-0347-2012-00733-4

[1] Blekherman, Grigoriy There are significantly more nonnegative polynomials than sums of squares Israel J. Math. 2006 355 380

[2] Bochnak, Jacek, Coste, Michel, Roy, Marie-Franã§Oise Real algebraic geometry 1998

[3] Solving polynomial equations 2005

[4] Choi, M. D., Lam, T. Y., Reznick, Bruce Even symmetric sextics Math. Z. 1987 559 580

[5] Eisenbud, David, Green, Mark, Harris, Joe Cayley-Bacharach theorems and conjectures Bull. Amer. Math. Soc. (N.S.) 1996 295 324

[6] Hardy, G. H., Littlewood, J. E., Pã³Lya, G. Inequalities 1988

[7] Harris, Joe Algebraic geometry 1995

[8] Nie, Jiawang, Schweighofer, Markus On the complexity of Putinar’s Positivstellensatz J. Complexity 2007 135 150

[9] Lasserre, Jean B. Global optimization with polynomials and the problem of moments SIAM J. Optim. 2000/01 796 817

[10] Parrilo, Pablo A. Semidefinite programming relaxations for semialgebraic problems Math. Program. 2003 293 320

[11] Ramana, Motakuri, Goldman, A. J. Some geometric results in semidefinite programming J. Global Optim. 1995 33 50

[12] Reznick, Bruce Sums of even powers of real linear forms Mem. Amer. Math. Soc. 1992

[13] Reznick, Bruce Some concrete aspects of Hilbert’s 17th Problem 2000 251 272

[14] Sanyal, Raman, Sottile, Frank, Sturmfels, Bernd Orbitopes Mathematika 2011 275 314

[15] Schneider, Rolf Convex bodies: the Brunn-Minkowski theory 1993

Cité par Sources :