𝑝-adic periods and derived de Rham cohomology
Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 715-738

Voir la notice de l'article provenant de la source American Mathematical Society

We show that derived de Rham cohomology of Illusie satisfies the $p$-adic Poincaré lemma in h-topology. This yields a new construction of the $p$-adic period map and a simple proof of Fontaine’s C$_{\text {dR}}$ conjecture.
DOI : 10.1090/S0894-0347-2012-00729-2

Beilinson, A. 1

1 Department of Mathematics, University of Chicago, Chicago, Illinois 60637
@article{10_1090_S0894_0347_2012_00729_2,
     author = {Beilinson, A.},
     title = {{\dh}‘-adic periods and derived de {Rham} cohomology},
     journal = {Journal of the American Mathematical Society},
     pages = {715--738},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2012},
     doi = {10.1090/S0894-0347-2012-00729-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00729-2/}
}
TY  - JOUR
AU  - Beilinson, A.
TI  - 𝑝-adic periods and derived de Rham cohomology
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 715
EP  - 738
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00729-2/
DO  - 10.1090/S0894-0347-2012-00729-2
ID  - 10_1090_S0894_0347_2012_00729_2
ER  - 
%0 Journal Article
%A Beilinson, A.
%T 𝑝-adic periods and derived de Rham cohomology
%J Journal of the American Mathematical Society
%D 2012
%P 715-738
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00729-2/
%R 10.1090/S0894-0347-2012-00729-2
%F 10_1090_S0894_0347_2012_00729_2
Beilinson, A. 𝑝-adic periods and derived de Rham cohomology. Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 715-738. doi: 10.1090/S0894-0347-2012-00729-2

[1] Berger, Laurent Représentations 𝑝-adiques et équations différentielles Invent. Math. 2002 219 284

[2] Bhatt, Bhargav Derived direct summands 2010 124

[3] Deligne, Pierre Théorie de Hodge. III Inst. Hautes Études Sci. Publ. Math. 1974 5 77

[4] De Jong, A. J. Smoothness, semi-stability and alterations Inst. Hautes Études Sci. Publ. Math. 1996 51 93

[5] De Jong, A. Johan Families of curves and alterations Ann. Inst. Fourier (Grenoble) 1997 599 621

[6] Faltings, Gerd 𝑝-adic Hodge theory J. Amer. Math. Soc. 1988 255 299

[7] Faltings, Gerd Almost étale extensions Astérisque 2002 185 270

[8] Faltings, Gerd, Chai, Ching-Li Degeneration of abelian varieties 1990

[9] Fontaine, Jean-Marc Sur certains types de représentations 𝑝-adiques du groupe de Galois d’un corps local Ann. of Math. (2) 1982 529 577

[10] Fontaine, Jean-Marc Formes différentielles et modules de Tate des variétés abéliennes sur les corps locaux Invent. Math. 1981/82 379 409

[11] Fontaine, Jean-Marc Le corps des périodes 𝑝-adiques Astérisque 1994 59 111

[12] Fontaine, Jean-Marc Représentations 𝑝-adiques semi-stables Astérisque 1994 113 184

[13] Grothendieck, A. On the de Rham cohomology of algebraic varieties Inst. Hautes Études Sci. Publ. Math. 1966 95 103

[14] Théorie des topos et cohomologie étale des schémas. Tome 2 1972

[15] Hinich, V. A., Schechtman, V. V. On homotopy limit of homotopy algebras 1987 240 264

[16] Illusie, Luc Complexe cotangent et déformations. I 1971

[17] Illusie, Luc Complexe cotangent et déformations. II 1972

[18] Jannsen, Uwe On the 𝑙-adic cohomology of varieties over number fields and its Galois cohomology 1989 315 360

[19] Kato, Kazuya Logarithmic structures of Fontaine-Illusie 1989 191 224

[20] Kato, Kazuya Toric singularities Amer. J. Math. 1994 1073 1099

[21] Nizioå‚, Wieså‚Awa Semistable conjecture via 𝐾-theory Duke Math. J. 2008 151 178

[22] Nizioå‚, Wieså‚Awa 𝑝-adic motivic cohomology in arithmetic 2006 459 472

[23] Nizioå‚, Wieså‚Awa On uniqueness of 𝑝-adic period morphisms Pure Appl. Math. Q. 2009 163 212

[24] Olsson, Martin C. The logarithmic cotangent complex Math. Ann. 2005 859 931

[25] Raynaud, M. Spécialisation du foncteur de Picard Inst. Hautes Études Sci. Publ. Math. 1970 27 76

[26] Raynaud, Michel, Gruson, Laurent Critères de platitude et de projectivité. Techniques de “platification” d’un module Invent. Math. 1971 1 89

[27] Théorie des topos et cohomologie étale des schémas. Tome 2 1972

[28] Suslin, Andrei, Voevodsky, Vladimir Singular homology of abstract algebraic varieties Invent. Math. 1996 61 94

[29] Temkin, Michael Stable modification of relative curves J. Algebraic Geom. 2010 603 677

[30] Tsuji, Takeshi 𝑝-adic étale cohomology and crystalline cohomology in the semi-stable reduction case Invent. Math. 1999 233 411

[31] Tsuji, Takeshi Semi-stable conjecture of Fontaine-Jannsen: a survey Astérisque 2002 323 370

Cité par Sources :