New bounds on cap sets
Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 585-613 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

We provide an improvement over Meshulam’s bound on cap sets in $F_3^N$. We show that there exist universal $\epsilon >0$ and $C>0$ so that any cap set in $F_3^N$ has size at most $C {3^N \over N^{1+\epsilon }}$. We do this by obtaining quite strong information about the additive combinatorial properties of the large spectrum.
DOI : 10.1090/S0894-0347-2011-00725-X

Bateman, Michael  1   ; Katz, Nets  2

1 Department of Mathematics, UCLA, Los Angeles, California 90095
2 Department of Mathematics, Indiana University, Bloomington, Indiana 47405-7000
@article{10_1090_S0894_0347_2011_00725_X,
     author = {Bateman, Michael and Katz, Nets},
     title = {New bounds on cap sets},
     journal = {Journal of the American Mathematical Society},
     pages = {585--613},
     year = {2012},
     volume = {25},
     number = {2},
     doi = {10.1090/S0894-0347-2011-00725-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00725-X/}
}
TY  - JOUR
AU  - Bateman, Michael
AU  - Katz, Nets
TI  - New bounds on cap sets
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 585
EP  - 613
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00725-X/
DO  - 10.1090/S0894-0347-2011-00725-X
ID  - 10_1090_S0894_0347_2011_00725_X
ER  - 
%0 Journal Article
%A Bateman, Michael
%A Katz, Nets
%T New bounds on cap sets
%J Journal of the American Mathematical Society
%D 2012
%P 585-613
%V 25
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00725-X/
%R 10.1090/S0894-0347-2011-00725-X
%F 10_1090_S0894_0347_2011_00725_X
Bateman, Michael; Katz, Nets. New bounds on cap sets. Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 585-613. doi: 10.1090/S0894-0347-2011-00725-X

[1] Croot, Ernie, Sisask, Olof A probabilistic technique for finding almost-periods of convolutions Geom. Funct. Anal. 2010 1367 1396

[2] Katz, Nets Hawk, Koester, Paul On additive doubling and energy SIAM J. Discrete Math. 2010 1684 1693

[3] Meshulam, Roy On subsets of finite abelian groups with no 3-term arithmetic progressions J. Combin. Theory Ser. A 1995 168 172

[4] Ruzsa, Imre Z. An analog of Freiman’s theorem in groups Astérisque 1999

[5] Sanders, T. A note on Freĭman’s theorem in vector spaces Combin. Probab. Comput. 2008 297 305

[6] Schoen, Tomasz Near optimal bounds in Freiman’s theorem Duke Math. J. 2011 1 12

[7] Shkredov, I. D. On sets of large trigonometric sums Izv. Ross. Akad. Nauk Ser. Mat. 2008 161 182

[8] Tao, Terence, Vu, Van Additive combinatorics 2006

Cité par Sources :