Toward the Fourier law for a weakly interacting anharmonic crystal
Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 555-583

Voir la notice de l'article provenant de la source American Mathematical Society

For a system of weakly interacting anharmonic oscillators, perturbed by an energy-preserving stochastic dynamics, we prove an autonomous (stochastic) evolution for the energies at large time scale (with respect to the coupling parameter). It turns out that this macroscopic evolution is given by the so-called conservative (nongradient) Ginzburg-Landau system of stochastic differential equations. The proof exploits hypocoercivity and hypoellipticity properties of the uncoupled dynamics.
DOI : 10.1090/S0894-0347-2011-00724-8

Liverani, Carlangelo 1 ; Olla, Stefano 2

1 Dipartimento di Matematica, II Università di Roma (Tor Vergata), Via della Ricerca Scientifica, 00133 Roma, Italy
2 CEREMADE, UMR CNRS 7534, Université Paris-Dauphine, 75775 Paris-Cedex 16, France and INRIA - Université Paris Est, CERMICS, Projet MICMAC, Ecole des Ponts ParisTech, 6 & 8 Av. Pascal, 77455 Marne-la-Vallée Cedex 2, France
@article{10_1090_S0894_0347_2011_00724_8,
     author = {Liverani, Carlangelo and Olla, Stefano},
     title = {Toward the {Fourier} law for a weakly interacting anharmonic crystal},
     journal = {Journal of the American Mathematical Society},
     pages = {555--583},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00724-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00724-8/}
}
TY  - JOUR
AU  - Liverani, Carlangelo
AU  - Olla, Stefano
TI  - Toward the Fourier law for a weakly interacting anharmonic crystal
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 555
EP  - 583
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00724-8/
DO  - 10.1090/S0894-0347-2011-00724-8
ID  - 10_1090_S0894_0347_2011_00724_8
ER  - 
%0 Journal Article
%A Liverani, Carlangelo
%A Olla, Stefano
%T Toward the Fourier law for a weakly interacting anharmonic crystal
%J Journal of the American Mathematical Society
%D 2012
%P 555-583
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00724-8/
%R 10.1090/S0894-0347-2011-00724-8
%F 10_1090_S0894_0347_2011_00724_8
Liverani, Carlangelo; Olla, Stefano. Toward the Fourier law for a weakly interacting anharmonic crystal. Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 555-583. doi: 10.1090/S0894-0347-2011-00724-8

[1] Bernardin, Cã©Dric, Olla, Stefano Fourier’s law for a microscopic model of heat conduction J. Stat. Phys. 2005 271 289

[2] Bonetto, F., Lebowitz, J. L., Rey-Bellet, L. Fourier’s law: a challenge to theorists 2000 128 150

[3] Cerrai, Sandra, Clã©Ment, Philippe Well-posedness of the martingale problem for some degenerate diffusion processes occurring in dynamics of populations Bull. Sci. Math. 2004 355 389

[4] Freä­Dlin, M. I. Fluctuations in dynamical systems with averaging Dokl. Akad. Nauk SSSR 1976 273 276

[5] Freidlin, M. I., Wentzell, A. D. Random perturbations of dynamical systems 1998

[6] Hã¶Rmander, Lars Hypoelliptic second order differential equations Acta Math. 1967 147 171

[7] Kifer, Yuri Some recent advances in averaging 2004 385 403

[8] Olla, S., Varadhan, S. R. S., Yau, H.-T. Hydrodynamical limit for a Hamiltonian system with weak noise Comm. Math. Phys. 1993 523 560

[9] Sethuraman, Sunder, Varadhan, S. R. S., Yau, Horng-Tzer Diffusive limit of a tagged particle in asymmetric simple exclusion processes Comm. Pure Appl. Math. 2000 972 1006

[10] Varadhan, S. R. S. Nonlinear diffusion limit for a system with nearest neighbor interactions. II 1993 75 128

[11] Villani, Cã©Dric Hypocoercivity Mem. Amer. Math. Soc. 2009

Cité par Sources :