Gravitational instantons from rational elliptic surfaces
Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 355-393

Voir la notice de l'article provenant de la source American Mathematical Society

Let $X$ denote the complex projective plane, blown up at the nine base points of a pencil of cubics, and let $D$ be any fiber of the resulting elliptic fibration on $X$. Using ansatz metrics inspired by work of Gross-Wilson and a PDE method due to Tian-Yau, we prove that $X \setminus D$ admits complete Ricci-flat Kähler metrics in most de Rham cohomology classes. If $D$ is smooth, the metrics converge to split flat cylinders $\mathbb {R}^+ \times S^1 \times D$ at an exponential rate. In this case, we also obtain a partial uniqueness result and a local description of the Einstein moduli space, which contains cylindrical metrics whose cross section does not split off a circle. If $D$ is singular but of finite monodromy, they converge at least polynomially to flat $T^2$-submersions over flat $2$-dimensional cones that need not be quotients of $\mathbb {R}^2$. If $D$ is singular of infinite monodromy, their volume growth rates are $4/3$ and $2$ for the Kodaira types $\textrm {I}_b$ and ${\textrm {I}_b}^*$, their injectivity radii decay like $r^{-1/3}$ and $(\log r)^{-1/2}$, and their curvature tensors decay like $r^{-2}$ and $r^{-2}(\log r)^{-1}$. In particular, the $\textrm {I}_b$ examples show that a curvature estimate due to Cheeger and Tian cannot be improved in general.
DOI : 10.1090/S0894-0347-2011-00723-6

Hein, Hans-Joachim 1

1 Department of Mathematics, Imperial College, London SW7 2AZ, United Kingdom
@article{10_1090_S0894_0347_2011_00723_6,
     author = {Hein, Hans-Joachim},
     title = {Gravitational instantons from rational elliptic surfaces},
     journal = {Journal of the American Mathematical Society},
     pages = {355--393},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00723-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00723-6/}
}
TY  - JOUR
AU  - Hein, Hans-Joachim
TI  - Gravitational instantons from rational elliptic surfaces
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 355
EP  - 393
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00723-6/
DO  - 10.1090/S0894-0347-2011-00723-6
ID  - 10_1090_S0894_0347_2011_00723_6
ER  - 
%0 Journal Article
%A Hein, Hans-Joachim
%T Gravitational instantons from rational elliptic surfaces
%J Journal of the American Mathematical Society
%D 2012
%P 355-393
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00723-6/
%R 10.1090/S0894-0347-2011-00723-6
%F 10_1090_S0894_0347_2011_00723_6
Hein, Hans-Joachim. Gravitational instantons from rational elliptic surfaces. Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 355-393. doi: 10.1090/S0894-0347-2011-00723-6

[1] Anderson, M. T. The 𝐿² structure of moduli spaces of Einstein metrics on 4-manifolds Geom. Funct. Anal. 1992 29 89

[2] Atiyah, Michael, Hitchin, Nigel The geometry and dynamics of magnetic monopoles 1988

[3] Barth, W., Peters, C., Van De Ven, A. Compact complex surfaces 1984

[4] Besse, Arthur L. Einstein manifolds 1987

[5] Buser, Peter A note on the isoperimetric constant Ann. Sci. École Norm. Sup. (4) 1982 213 230

[6] Cheeger, Jeff Degeneration of Einstein metrics and metrics with special holonomy 2003 29 73

[7] Cheeger, Jeff, Colding, Tobias H. Lower bounds on Ricci curvature and the almost rigidity of warped products Ann. of Math. (2) 1996 189 237

[8] Cheeger, Jeff, Gromov, Mikhail, Taylor, Michael Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds J. Differential Geometry 1982 15 53

[9] Cheeger, Jeff, Tian, Gang Curvature and injectivity radius estimates for Einstein 4-manifolds J. Amer. Math. Soc. 2006 487 525

[10] Cherkis, Sergey A., Hitchin, Nigel J. Gravitational instantons of type 𝐷_{𝑘} Comm. Math. Phys. 2005 299 317

[11] Cherkis, Sergey A., Kapustin, Anton Hyper-Kähler metrics from periodic monopoles Phys. Rev. D (3) 2002

[12] Freed, Daniel S. Special Kähler manifolds Comm. Math. Phys. 1999 31 52

[13] Gompf, Robert E., Stipsicz, Andrã¡S I. 4-manifolds and Kirby calculus 1999

[14] Goto, Ryushi Moduli spaces of topological calibrations, Calabi-Yau, hyper-Kähler, 𝐺₂ and 𝑆𝑝𝑖𝑛(7) structures Internat. J. Math. 2004 211 257

[15] Greene, Brian R., Shapere, Alfred, Vafa, Cumrun, Yau, Shing-Tung Stringy cosmic strings and noncompact Calabi-Yau manifolds Nuclear Phys. B 1990 1 36

[16] Griffiths, Phillip, Harris, Joseph Principles of algebraic geometry 1978

[17] Grigor’Yan, Alexander, Saloff-Coste, Laurent Stability results for Harnack inequalities Ann. Inst. Fourier (Grenoble) 2005 825 890

[18] Gross, Mark, Wilson, P. M. H. Large complex structure limits of 𝐾3 surfaces J. Differential Geom. 2000 475 546

[19] Harbourne, Brian, Lang, William E. Multiple fibers on rational elliptic surfaces Trans. Amer. Math. Soc. 1988 205 223

[20] Hein, Hans-Joachim On gravitational instantons 2010 129

[21] Hein, Hans-Joachim Weighted Sobolev inequalities under lower Ricci curvature bounds Proc. Amer. Math. Soc. 2011 2943 2955

[22] Hitchin, N. J. Twistor construction of Einstein metrics 1984 115 125

[23] Hitchin, N. J. The moduli space of complex Lagrangian submanifolds Asian J. Math. 1999 77 91

[24] Huybrechts, Daniel Complex geometry 2005

[25] Joyce, Dominic Asymptotically locally Euclidean metrics with holonomy 𝑆𝑈(𝑚) Ann. Global Anal. Geom. 2001 55 73

[26] Kodaira, K. On compact analytic surfaces. II, III Ann. of Math. (2) 1963

[27] Kodaira, K., Nirenberg, L., Spencer, D. C. On the existence of deformations of complex analytic structures Ann. of Math. (2) 1958 450 459

[28] Kodaira, K., Spencer, D. C. On deformations of complex analytic structures. III. Stability theorems for complex structures Ann. of Math. (2) 1960 43 76

[29] Koehler, Bert, Kã¼Hnel, Marco On asymptotics of complete Ricci-flat Kähler metrics on open manifolds Manuscripta Math. 2010 431 462

[30] Koiso, N. Einstein metrics and complex structures Invent. Math. 1983 71 106

[31] Kovalev, Alexei Twisted connected sums and special Riemannian holonomy J. Reine Angew. Math. 2003 125 160

[32] Kovalev, Alexei Ricci-flat deformations of asymptotically cylindrical Calabi-Yau manifolds 2006 140 156

[33] Kronheimer, P. B. The construction of ALE spaces as hyper-Kähler quotients J. Differential Geom. 1989 665 683

[34] Kronheimer, P. B. A Torelli-type theorem for gravitational instantons J. Differential Geom. 1989 685 697

[35] Lebrun, Claude Complete Ricci-flat Kähler metrics on 𝐶ⁿ need not be flat 1991 297 304

[36] Li, Peter, Tam, Luen-Fai Green’s functions, harmonic functions, and volume comparison J. Differential Geom. 1995 277 318

[37] Loftin, John C. Singular semi-flat Calabi-Yau metrics on 𝑆² Comm. Anal. Geom. 2005 333 361

[38] Maheux, P., Saloff-Coste, L. Analyse sur les boules d’un opérateur sous-elliptique Math. Ann. 1995 713 740

[39] Minerbe, Vincent On the asymptotic geometry of gravitational instantons Ann. Sci. Éc. Norm. Supér. (4) 2010 883 924

[40] Miranda, Rick The moduli of Weierstrass fibrations over 𝑃¹ Math. Ann. 1981 379 394

[41] Miranda, Rick Persson’s list of singular fibers for a rational elliptic surface Math. Z. 1990 191 211

[42] Nordstrã¶M, Johannes Deformations of asymptotically cylindrical 𝐺₂-manifolds Math. Proc. Cambridge Philos. Soc. 2008 311 348

[43] Nordstrã¶M, Johannes Deformations of glued 𝐺₂-manifolds Comm. Anal. Geom. 2009 481 503

[44] Song, Jian, Tian, Gang The Kähler-Ricci flow on surfaces of positive Kodaira dimension Invent. Math. 2007 609 653

[45] Tian, Gang Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric 1987 629 646

[46] Tian, Gang Aspects of metric geometry of four manifolds 2006 381 397

[47] Tian, G., Yau, Shing-Tung Complete Kähler manifolds with zero Ricci curvature. I J. Amer. Math. Soc. 1990 579 609

[48] Tian, Gang, Yau, Shing-Tung Complete Kähler manifolds with zero Ricci curvature. II Invent. Math. 1991 27 60

[49] Todorov, Andrey N. The Weil-Petersson geometry of the moduli space of 𝑆𝑈(𝑛≥3) (Calabi-Yau) manifolds. I Comm. Math. Phys. 1989 325 346

[50] Tosatti, Valentino Adiabatic limits of Ricci-flat Kähler metrics J. Differential Geom. 2010 427 453

Cité par Sources :