Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_2011_00721_2,
     author = {Calegari, Frank},
     title = {Even {Galois} representations and the {Fontaine\^aMazur} conjecture. {II}},
     journal = {Journal of the American Mathematical Society},
     pages = {533--554},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00721-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00721-2/}
}
                      
                      
                    TY - JOUR AU - Calegari, Frank TI - Even Galois representations and the FontaineâMazur conjecture. II JO - Journal of the American Mathematical Society PY - 2012 SP - 533 EP - 554 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00721-2/ DO - 10.1090/S0894-0347-2011-00721-2 ID - 10_1090_S0894_0347_2011_00721_2 ER -
%0 Journal Article %A Calegari, Frank %T Even Galois representations and the FontaineâMazur conjecture. II %J Journal of the American Mathematical Society %D 2012 %P 533-554 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00721-2/ %R 10.1090/S0894-0347-2011-00721-2 %F 10_1090_S0894_0347_2011_00721_2
Calegari, Frank. Even Galois representations and the FontaineâMazur conjecture. II. Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 533-554. doi: 10.1090/S0894-0347-2011-00721-2
[1] , Simple algebras, base change, and the advanced theory of the trace formula 1989
[2] , , The Sato-Tate conjecture for Hilbert modular forms J. Amer. Math. Soc. 2011 411 469
[3] , Multiplicités modulaires et représentations de ðºð¿â(ð_{ð}) et de ðºðð(\overline{ð}_{ð}/ð_{ð}) en ð Duke Math. J. 2002 205 310
[4] On the density of modular points in universal deformation spaces Amer. J. Math. 2001 985 1007
[5] , Tate classes and arithmetic quotients of the two-ball 1992 421 444
[6] , , Pseudo-reductive groups 2010
[7] , Nearly ordinary Galois deformations over arbitrary number fields J. Inst. Math. Jussieu 2009 99 177
[8] Représentations de ðºð¿â(ð_{ð©}) et (ð,Î)-modules Astérisque 2010 281 509
[9] Formes modulaires et représentations de ðºð¿(2) 1973 55 105
[10] Smoothness, semi-stability and alterations Inst. Hautes Ãtudes Sci. Publ. Math. 1996 51 93
[11] ð-adic Hodge theory J. Amer. Math. Soc. 1988 255 299
[12] , Geometric Galois representations 1995 41 78
[13] Représentations ð-adiques potentiellement semi-stables Astérisque 1994 321 347
[14] , , A family of Calabi-Yau varieties and potential automorphy Ann. of Math. (2) 2010 779 813
[15] , The geometry and cohomology of some simple Shimura varieties 2001
[16] , On Euler products and the classification of automorphic forms. II Amer. J. Math. 1981 777 815
[17] Modularity of 2-dimensional Galois representations 2007 191 230
[18] Potentially semi-stable deformation rings J. Amer. Math. Soc. 2008 513 546
[19] The Fontaine-Mazur conjecture for ðºð¿â J. Amer. Math. Soc. 2009 641 690
[20] A polynomial with Galois group ðð¿â(11) J. Symbolic Comput. 2000 733 737
[21] , Serreâs modularity conjecture. I Invent. Math. 2009 485 504
[22] , Serreâs modularity conjecture. II Invent. Math. 2009 505 586
[23] Multi-parameter polynomials with given Galois group J. Symbolic Comput. 2000 717 731
[24] An âinfinite fernâ in the universal deformation space of Galois representations Collect. Math. 1997 155 193
[25] Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur Ann. of Math. (2) 2002 115 154
[26] On a theorem of Jordan Bull. Amer. Math. Soc. (N.S.) 2003 429 440
[27] Galois representations arising from some compact Shimura varieties Ann. of Math. (2) 2011 1645 1741
[28] ð-adic Hodge theory in the semi-stable reduction case Doc. Math. 1998 207 216
[29] , Compatibility of local and global Langlands correspondences J. Amer. Math. Soc. 2007 467 493
Cité par Sources :
