Even Galois representations and the Fontaine–Mazur conjecture. II
Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 533-554

Voir la notice de l'article provenant de la source American Mathematical Society

We prove, under mild hypotheses, that there are no irreducible two-dimensional potentially semi-stable even $p$-adic Galois representations of $\mathrm {Gal}(\overline {\mathbf {Q}})$ with distinct Hodge–Tate weights. This removes the ordinary hypotheses required in the author’s previous work. We construct examples of irreducible two-dimensional residual representations that have no characteristic zero geometric deformations.
DOI : 10.1090/S0894-0347-2011-00721-2

Calegari, Frank 1

1 Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, Illinois 60208
@article{10_1090_S0894_0347_2011_00721_2,
     author = {Calegari, Frank},
     title = {Even {Galois} representations and the {Fontaine\^a€“Mazur} conjecture. {II}},
     journal = {Journal of the American Mathematical Society},
     pages = {533--554},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00721-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00721-2/}
}
TY  - JOUR
AU  - Calegari, Frank
TI  - Even Galois representations and the Fontaine–Mazur conjecture. II
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 533
EP  - 554
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00721-2/
DO  - 10.1090/S0894-0347-2011-00721-2
ID  - 10_1090_S0894_0347_2011_00721_2
ER  - 
%0 Journal Article
%A Calegari, Frank
%T Even Galois representations and the Fontaine–Mazur conjecture. II
%J Journal of the American Mathematical Society
%D 2012
%P 533-554
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00721-2/
%R 10.1090/S0894-0347-2011-00721-2
%F 10_1090_S0894_0347_2011_00721_2
Calegari, Frank. Even Galois representations and the Fontaine–Mazur conjecture. II. Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 533-554. doi: 10.1090/S0894-0347-2011-00721-2

[1] Arthur, James, Clozel, Laurent Simple algebras, base change, and the advanced theory of the trace formula 1989

[2] Barnet-Lamb, Thomas, Gee, Toby, Geraghty, David The Sato-Tate conjecture for Hilbert modular forms J. Amer. Math. Soc. 2011 411 469

[3] Breuil, Christophe, Mã©Zard, Ariane Multiplicités modulaires et représentations de 𝐺𝐿₂(𝑍_{𝑝}) et de 𝐺𝑎𝑙(\overline{𝑄}_{𝑝}/𝑄_{𝑝}) en 𝑙 Duke Math. J. 2002 205 310

[4] Bã¶Ckle, Gebhard On the density of modular points in universal deformation spaces Amer. J. Math. 2001 985 1007

[5] Blasius, Don, Rogawski, Jonathan D. Tate classes and arithmetic quotients of the two-ball 1992 421 444

[6] Conrad, Brian, Gabber, Ofer, Prasad, Gopal Pseudo-reductive groups 2010

[7] Calegari, Frank, Mazur, Barry Nearly ordinary Galois deformations over arbitrary number fields J. Inst. Math. Jussieu 2009 99 177

[8] Colmez, Pierre Représentations de 𝐺𝐿₂(𝐐_{𝐩}) et (𝜙,Γ)-modules Astérisque 2010 281 509

[9] Deligne, P. Formes modulaires et représentations de 𝐺𝐿(2) 1973 55 105

[10] De Jong, A. J. Smoothness, semi-stability and alterations Inst. Hautes Études Sci. Publ. Math. 1996 51 93

[11] Faltings, Gerd 𝑝-adic Hodge theory J. Amer. Math. Soc. 1988 255 299

[12] Fontaine, Jean-Marc, Mazur, Barry Geometric Galois representations 1995 41 78

[13] Fontaine, Jean-Marc Représentations 𝑙-adiques potentiellement semi-stables Astérisque 1994 321 347

[14] Harris, Michael, Shepherd-Barron, Nick, Taylor, Richard A family of Calabi-Yau varieties and potential automorphy Ann. of Math. (2) 2010 779 813

[15] Harris, Michael, Taylor, Richard The geometry and cohomology of some simple Shimura varieties 2001

[16] Jacquet, H., Shalika, J. A. On Euler products and the classification of automorphic forms. II Amer. J. Math. 1981 777 815

[17] Kisin, Mark Modularity of 2-dimensional Galois representations 2007 191 230

[18] Kisin, Mark Potentially semi-stable deformation rings J. Amer. Math. Soc. 2008 513 546

[19] Kisin, Mark The Fontaine-Mazur conjecture for 𝐺𝐿₂ J. Amer. Math. Soc. 2009 641 690

[20] Klã¼Ners, Jã¼Rgen A polynomial with Galois group 𝑆𝐿₂(11) J. Symbolic Comput. 2000 733 737

[21] Khare, Chandrashekhar, Wintenberger, Jean-Pierre Serre’s modularity conjecture. I Invent. Math. 2009 485 504

[22] Khare, Chandrashekhar, Wintenberger, Jean-Pierre Serre’s modularity conjecture. II Invent. Math. 2009 505 586

[23] Malle, Gunter Multi-parameter polynomials with given Galois group J. Symbolic Comput. 2000 717 731

[24] Mazur, B. An “infinite fern” in the universal deformation space of Galois representations Collect. Math. 1997 155 193

[25] Ramakrishna, Ravi Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur Ann. of Math. (2) 2002 115 154

[26] Serre, Jean-Pierre On a theorem of Jordan Bull. Amer. Math. Soc. (N.S.) 2003 429 440

[27] Shin, Sug Woo Galois representations arising from some compact Shimura varieties Ann. of Math. (2) 2011 1645 1741

[28] Tsuji, Takeshi 𝑝-adic Hodge theory in the semi-stable reduction case Doc. Math. 1998 207 216

[29] Taylor, Richard, Yoshida, Teruyoshi Compatibility of local and global Langlands correspondences J. Amer. Math. Soc. 2007 467 493

Cité par Sources :