Song, Jian 1 ; Tian, Gang 2
@article{10_1090_S0894_0347_2011_00717_0,
author = {Song, Jian and Tian, Gang},
title = {Canonical measures and {K\"ahler-Ricci} flow},
journal = {Journal of the American Mathematical Society},
pages = {303--353},
year = {2012},
volume = {25},
number = {2},
doi = {10.1090/S0894-0347-2011-00717-0},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00717-0/}
}
TY - JOUR AU - Song, Jian AU - Tian, Gang TI - Canonical measures and Kähler-Ricci flow JO - Journal of the American Mathematical Society PY - 2012 SP - 303 EP - 353 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00717-0/ DO - 10.1090/S0894-0347-2011-00717-0 ID - 10_1090_S0894_0347_2011_00717_0 ER -
%0 Journal Article %A Song, Jian %A Tian, Gang %T Canonical measures and Kähler-Ricci flow %J Journal of the American Mathematical Society %D 2012 %P 303-353 %V 25 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00717-0/ %R 10.1090/S0894-0347-2011-00717-0 %F 10_1090_S0894_0347_2011_00717_0
Song, Jian; Tian, Gang. Canonical measures and Kähler-Ricci flow. Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 303-353. doi: 10.1090/S0894-0347-2011-00717-0
[1] Équations du type Monge-Ampère sur les variétés kählériennes compactes Bull. Sci. Math. (2) 1978 63 95
[2] , Uniqueness of Einstein Kähler metrics modulo connected group actions 1987 11 40
[3] , , , Existence of minimal models for varieties of log general type J. Amer. Math. Soc. 2010 405 468
[4] Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds Invent. Math. 1985 359 372
[5] The Ricci flow on the 2-sphere J. Differential Geom. 1991 325 334
[6] , Ricci flow on Kähler-Einstein surfaces Invent. Math. 2002 487 544
[7] , Differential equations on Riemannian manifolds and their geometric applications Comm. Pure Appl. Math. 1975 333 354
[8] , , Higher-dimensional complex geometry Astérisque 1988
[9] , Degenerate complex Monge-Ampère equations over compact Kähler manifolds Internat. J. Math. 2010 357 405
[10] , On stability and continuity of bounded solutions of degenerate complex Monge-Ampère equations over compact Kähler manifolds Adv. Math. 2010 367 388
[11] Scalar curvature and projective embeddings. I J. Differential Geom. 2001 479 522
[12] , , Singular Kähler-Einstein metrics J. Amer. Math. Soc. 2009 607 639
[13] , , A priori 𝐿^{∞}-estimates for degenerate complex Monge-Ampère equations Int. Math. Res. Not. IMRN 2008
[14] , Generalized Hodge metrics and BCOV torsion on Calabi-Yau moduli J. Reine Angew. Math. 2005 49 69
[15] Constant scalar curvature Kähler metrics on fibred complex surfaces J. Differential Geom. 2004 397 432
[16] , Large complex structure limits of 𝐾3 surfaces J. Differential Geom. 2000 475 546
[17] Three-manifolds with positive Ricci curvature J. Differential Geometry 1982 255 306
[18] The complex Monge-Ampère equation Acta Math. 1998 69 117
[19] The Monge-Ampère equation on compact Kähler manifolds Indiana Univ. Math. J. 2003 667 686
[20] , Estimates of eigenvalues of a compact Riemannian manifold 1980 205 239
[21] Positivity in algebraic geometry. I 2004
[22] On the long-time behavior of type-III Ricci flow solutions Math. Ann. 2007 627 666
[23] , On stability and the convergence of the Kähler-Ricci flow J. Differential Geom. 2006 149 168
[24] Invariance of plurigenera Invent. Math. 1998 661 673
[25] Multiplier ideal sheaves in complex and algebraic geometry Sci. China Ser. A 2005 1 31
[26] , The Kähler-Ricci flow on surfaces of positive Kodaira dimension Invent. Math. 2007 609 653
[27] , On the convergence and singularities of the 𝐽-flow with applications to the Mabuchi energy Comm. Pure Appl. Math. 2008 210 229
[28] , , Mirror symmetry is 𝑇-duality Nuclear Phys. B 1996 243 259
[29] On Kähler-Einstein metrics on certain Kähler manifolds with 𝐶₁(𝑀)>0 Invent. Math. 1987 225 246
[30] On Calabi’s conjecture for complex surfaces with positive first Chern class Invent. Math. 1990 101 172
[31] On a set of polarized Kähler metrics on algebraic manifolds J. Differential Geom. 1990 99 130
[32] Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric 1987 629 646
[33] , On the Kähler-Ricci flow on projective manifolds of general type Chinese Ann. Math. Ser. B 2006 179 192
[34] , Convergence of Kähler-Ricci flow J. Amer. Math. Soc. 2007 675 699
[35] Limits of Calabi-Yau metrics when the Kähler class degenerates J. Eur. Math. Soc. (JEMS) 2009 755 776
[36] Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type Math. Ann. 1988 123 133
[37] Analytic Zariski decomposition Proc. Japan Acad. Ser. A Math. Sci. 1992 161 163
[38] Classification theory of algebraic varieties and compact complex spaces 1975
[39] A general Schwarz lemma for Kähler manifolds Amer. J. Math. 1978 197 203
[40] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I Comm. Pure Appl. Math. 1978 339 411
[41] On degenerate Monge-Ampère equations over closed Kähler manifolds Int. Math. Res. Not. 2006
Cité par Sources :