Canonical measures and Kähler-Ricci flow
Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 303-353 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

We show that the Kähler-Ricci flow on a projective manifold of positive Kodaira dimension and semi-ample canonical line bundle converges to a unique canonical metric on its canonical model. It is also shown that there exists a canonical measure of analytic Zariski decomposition on a projective manifold of positive Kodaira dimension. Such a canonical measure is unique and invariant under birational transformations under the assumption of the finite generation of canonical rings.
DOI : 10.1090/S0894-0347-2011-00717-0

Song, Jian 1 ; Tian, Gang 2

1 Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854
2 School of Mathematical Sciences and BICMR, Peking University, Beijing, 100871, People’s Republic of China and Department of Mathematics, Princeton University, Princeton, New Jersey 08544
@article{10_1090_S0894_0347_2011_00717_0,
     author = {Song, Jian and Tian, Gang},
     title = {Canonical measures and {K\"ahler-Ricci} flow},
     journal = {Journal of the American Mathematical Society},
     pages = {303--353},
     year = {2012},
     volume = {25},
     number = {2},
     doi = {10.1090/S0894-0347-2011-00717-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00717-0/}
}
TY  - JOUR
AU  - Song, Jian
AU  - Tian, Gang
TI  - Canonical measures and Kähler-Ricci flow
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 303
EP  - 353
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00717-0/
DO  - 10.1090/S0894-0347-2011-00717-0
ID  - 10_1090_S0894_0347_2011_00717_0
ER  - 
%0 Journal Article
%A Song, Jian
%A Tian, Gang
%T Canonical measures and Kähler-Ricci flow
%J Journal of the American Mathematical Society
%D 2012
%P 303-353
%V 25
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00717-0/
%R 10.1090/S0894-0347-2011-00717-0
%F 10_1090_S0894_0347_2011_00717_0
Song, Jian; Tian, Gang. Canonical measures and Kähler-Ricci flow. Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 303-353. doi: 10.1090/S0894-0347-2011-00717-0

[1] Aubin, Thierry Équations du type Monge-Ampère sur les variétés kählériennes compactes Bull. Sci. Math. (2) 1978 63 95

[2] Bando, Shigetoshi, Mabuchi, Toshiki Uniqueness of Einstein Kähler metrics modulo connected group actions 1987 11 40

[3] Birkar, Caucher, Cascini, Paolo, Hacon, Christopher D., Mckernan, James Existence of minimal models for varieties of log general type J. Amer. Math. Soc. 2010 405 468

[4] Cao, Huai Dong Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds Invent. Math. 1985 359 372

[5] Chow, Bennett The Ricci flow on the 2-sphere J. Differential Geom. 1991 325 334

[6] Chen, X. X., Tian, G. Ricci flow on Kähler-Einstein surfaces Invent. Math. 2002 487 544

[7] Cheng, S. Y., Yau, S. T. Differential equations on Riemannian manifolds and their geometric applications Comm. Pure Appl. Math. 1975 333 354

[8] Clemens, Herbert, Kollár, János, Mori, Shigefumi Higher-dimensional complex geometry Astérisque 1988

[9] Demailly, Jean-Pierre, Pali, Nefton Degenerate complex Monge-Ampère equations over compact Kähler manifolds Internat. J. Math. 2010 357 405

[10] Dinew, Sławomir, Zhang, Zhou On stability and continuity of bounded solutions of degenerate complex Monge-Ampère equations over compact Kähler manifolds Adv. Math. 2010 367 388

[11] Donaldson, S. K. Scalar curvature and projective embeddings. I J. Differential Geom. 2001 479 522

[12] Eyssidieux, Philippe, Guedj, Vincent, Zeriahi, Ahmed Singular Kähler-Einstein metrics J. Amer. Math. Soc. 2009 607 639

[13] Eyssidieux, Philippe, Guedj, Vincent, Zeriahi, Ahmed A priori 𝐿^{∞}-estimates for degenerate complex Monge-Ampère equations Int. Math. Res. Not. IMRN 2008

[14] Fang, Hao, Lu, Zhiqin Generalized Hodge metrics and BCOV torsion on Calabi-Yau moduli J. Reine Angew. Math. 2005 49 69

[15] Fine, Joel Constant scalar curvature Kähler metrics on fibred complex surfaces J. Differential Geom. 2004 397 432

[16] Gross, Mark, Wilson, P. M. H. Large complex structure limits of 𝐾3 surfaces J. Differential Geom. 2000 475 546

[17] Hamilton, Richard S. Three-manifolds with positive Ricci curvature J. Differential Geometry 1982 255 306

[18] Kołodziej, Sławomir The complex Monge-Ampère equation Acta Math. 1998 69 117

[19] Kołodziej, Sławomir The Monge-Ampère equation on compact Kähler manifolds Indiana Univ. Math. J. 2003 667 686

[20] Li, Peter, Yau, Shing Tung Estimates of eigenvalues of a compact Riemannian manifold 1980 205 239

[21] Lazarsfeld, Robert Positivity in algebraic geometry. I 2004

[22] Lott, John On the long-time behavior of type-III Ricci flow solutions Math. Ann. 2007 627 666

[23] Phong, Duong H., Sturm, Jacob On stability and the convergence of the Kähler-Ricci flow J. Differential Geom. 2006 149 168

[24] Siu, Yum-Tong Invariance of plurigenera Invent. Math. 1998 661 673

[25] Siu, Yum-Tong Multiplier ideal sheaves in complex and algebraic geometry Sci. China Ser. A 2005 1 31

[26] Song, Jian, Tian, Gang The Kähler-Ricci flow on surfaces of positive Kodaira dimension Invent. Math. 2007 609 653

[27] Song, Jian, Weinkove, Ben On the convergence and singularities of the 𝐽-flow with applications to the Mabuchi energy Comm. Pure Appl. Math. 2008 210 229

[28] Strominger, Andrew, Yau, Shing-Tung, Zaslow, Eric Mirror symmetry is 𝑇-duality Nuclear Phys. B 1996 243 259

[29] Tian, Gang On Kähler-Einstein metrics on certain Kähler manifolds with 𝐶₁(𝑀)>0 Invent. Math. 1987 225 246

[30] Tian, G. On Calabi’s conjecture for complex surfaces with positive first Chern class Invent. Math. 1990 101 172

[31] Tian, Gang On a set of polarized Kähler metrics on algebraic manifolds J. Differential Geom. 1990 99 130

[32] Tian, Gang Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric 1987 629 646

[33] Tian, Gang, Zhang, Zhou On the Kähler-Ricci flow on projective manifolds of general type Chinese Ann. Math. Ser. B 2006 179 192

[34] Tian, Gang, Zhu, Xiaohua Convergence of Kähler-Ricci flow J. Amer. Math. Soc. 2007 675 699

[35] Tosatti, Valentino Limits of Calabi-Yau metrics when the Kähler class degenerates J. Eur. Math. Soc. (JEMS) 2009 755 776

[36] Tsuji, Hajime Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type Math. Ann. 1988 123 133

[37] Tsuji, Hajime Analytic Zariski decomposition Proc. Japan Acad. Ser. A Math. Sci. 1992 161 163

[38] Ueno, Kenji Classification theory of algebraic varieties and compact complex spaces 1975

[39] Yau, Shing Tung A general Schwarz lemma for Kähler manifolds Amer. J. Math. 1978 197 203

[40] Yau, Shing Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I Comm. Pure Appl. Math. 1978 339 411

[41] Zhang, Zhou On degenerate Monge-Ampère equations over closed Kähler manifolds Int. Math. Res. Not. 2006

Cité par Sources :