Logarithmic fluctuations for internal DLA
Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 271-301

Voir la notice de l'article provenant de la source American Mathematical Society

Let each of $n$ particles starting at the origin in $\mathbb Z^2$ perform simple random walk until reaching a site with no other particles. Lawler, Bramson, and Griffeath proved that the resulting random set $A(n)$ of $n$ occupied sites is (with high probability) close to a disk $\mathbf {B}_r$ of radius $r=\sqrt {n/\pi }$. We show that the discrepancy between $A(n)$ and the disk is at most logarithmic in the radius: i.e., there is an absolute constant $C$ such that with probability $1$, \[ \mathbf {B}_{r - C\log r} \subset A(\pi r^2) \subset \mathbf {B}_{r+ C\log r} \quad \mbox { for all sufficiently large $r$}. \]
DOI : 10.1090/S0894-0347-2011-00716-9

Jerison, David 1 ; Levine, Lionel 1 ; Sheffield, Scott 1

1 Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
@article{10_1090_S0894_0347_2011_00716_9,
     author = {Jerison, David and Levine, Lionel and Sheffield, Scott},
     title = {Logarithmic fluctuations for internal {DLA}},
     journal = {Journal of the American Mathematical Society},
     pages = {271--301},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00716-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00716-9/}
}
TY  - JOUR
AU  - Jerison, David
AU  - Levine, Lionel
AU  - Sheffield, Scott
TI  - Logarithmic fluctuations for internal DLA
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 271
EP  - 301
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00716-9/
DO  - 10.1090/S0894-0347-2011-00716-9
ID  - 10_1090_S0894_0347_2011_00716_9
ER  - 
%0 Journal Article
%A Jerison, David
%A Levine, Lionel
%A Sheffield, Scott
%T Logarithmic fluctuations for internal DLA
%J Journal of the American Mathematical Society
%D 2012
%P 271-301
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00716-9/
%R 10.1090/S0894-0347-2011-00716-9
%F 10_1090_S0894_0347_2011_00716_9
Jerison, David; Levine, Lionel; Sheffield, Scott. Logarithmic fluctuations for internal DLA. Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 271-301. doi: 10.1090/S0894-0347-2011-00716-9

[1] Diaconis, P., Fulton, W. A growth model, a game, an algebra, Lagrange inversion, and characteristic classes Rend. Sem. Mat. Univ. Politec. Torino 1991

[2] Fukai, Yasunari, Uchiyama, Kã´Hei Potential kernel for two-dimensional random walk Ann. Probab. 1996 1979 1992

[3] Gravner, Janko, Quastel, Jeremy Internal DLA and the Stefan problem Ann. Probab. 2000 1528 1562

[4] Kager, Wouter, Levine, Lionel Diamond aggregation Math. Proc. Cambridge Philos. Soc. 2010 351 372

[5] Kesten, Harry Upper bounds for the growth rate of DLA Phys. A 1990 529 535

[6] Kozma, Gady, Schreiber, Ehud An asymptotic expansion for the discrete harmonic potential Electron. J. Probab. 2004

[7] Lawler, Gregory F., Bramson, Maury, Griffeath, David Internal diffusion limited aggregation Ann. Probab. 1992 2117 2140

[8] Lawler, Gregory F. Subdiffusive fluctuations for internal diffusion limited aggregation Ann. Probab. 1995 71 86

[9] Lawler, Gregory F., Limic, Vlada Random walk: a modern introduction 2010

[10] Levine, Lionel, Peres, Yuval Strong spherical asymptotics for rotor-router aggregation and the divisible sandpile Potential Anal. 2009 1 27

[11] Levine, Lionel, Peres, Yuval Scaling limits for internal aggregation models with multiple sources J. Anal. Math. 2010 151 219

[12] Moore, Cristopher, Machta, Jonathan Internal diffusion-limited aggregation: parallel algorithms and complexity J. Statist. Phys. 2000 661 690

[13] Mã¶Rters, Peter, Peres, Yuval Brownian motion 2010

[14] Revuz, Daniel, Yor, Marc Continuous martingales and Brownian motion 1999

[15] Sheffield, Scott Gaussian free fields for mathematicians Probab. Theory Related Fields 2007 521 541

[16] Wilson, David Bruce Generating random spanning trees more quickly than the cover time 1996 296 303

Cité par Sources :