Algebraic independence of periods and logarithms of Drinfeld modules
Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 123-150

Voir la notice de l'article provenant de la source American Mathematical Society

Let $\rho$ be a Drinfeld $A$-module with generic characteristic defined over an algebraic function field. We prove that all of the algebraic relations among periods, quasi-periods, and logarithms of algebraic points on $\rho$ are those coming from linear relations induced by endomorphisms of $\rho$.
DOI : 10.1090/S0894-0347-2011-00714-5

Chang, Chieh-Yu 1 ; Papanikolas, Matthew 2

1 Department of Mathematics, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Road, Hsinchu City 30042, Taiwan, Republic of China and National Center for Theoretical Sciences, Hsinchu City 30042, Taiwan, Republic of China
2 Department of Mathematics, Texas A&M University, College Station, Texas 77843 U.S.A.
@article{10_1090_S0894_0347_2011_00714_5,
     author = {Chang, Chieh-Yu and Papanikolas, Matthew},
     title = {Algebraic independence of periods and logarithms of {Drinfeld} modules},
     journal = {Journal of the American Mathematical Society},
     pages = {123--150},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00714-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00714-5/}
}
TY  - JOUR
AU  - Chang, Chieh-Yu
AU  - Papanikolas, Matthew
TI  - Algebraic independence of periods and logarithms of Drinfeld modules
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 123
EP  - 150
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00714-5/
DO  - 10.1090/S0894-0347-2011-00714-5
ID  - 10_1090_S0894_0347_2011_00714_5
ER  - 
%0 Journal Article
%A Chang, Chieh-Yu
%A Papanikolas, Matthew
%T Algebraic independence of periods and logarithms of Drinfeld modules
%J Journal of the American Mathematical Society
%D 2012
%P 123-150
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00714-5/
%R 10.1090/S0894-0347-2011-00714-5
%F 10_1090_S0894_0347_2011_00714_5
Chang, Chieh-Yu; Papanikolas, Matthew. Algebraic independence of periods and logarithms of Drinfeld modules. Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 123-150. doi: 10.1090/S0894-0347-2011-00714-5

[1] Anderson, Greg W. 𝑡-motives Duke Math. J. 1986 457 502

[2] Anderson, Greg W., Brownawell, W. Dale, Papanikolas, Matthew A. Determination of the algebraic relations among special Γ-values in positive characteristic Ann. of Math. (2) 2004 237 313

[3] Baker, A., Wã¼Stholz, G. Logarithmic forms and Diophantine geometry 2007

[4] Brownawell, W. Dale Minimal extensions of algebraic groups and linear independence J. Number Theory 2001 239 254

[5] Brownawell, W. Dale, Papanikolas, Matthew A. Linear independence of gamma values in positive characteristic J. Reine Angew. Math. 2002 91 148

[6] Conrad, Brian, Gabber, Ofer, Prasad, Gopal Pseudo-reductive groups 2010

[7] David, Sinnou, Denis, Laurent Périodes de modules de “l’indépendance quadratique en rang II” J. Ramanujan Math. Soc. 2002 65 83

[8] Deligne, Pierre, Milne, James S., Ogus, Arthur, Shih, Kuang-Yen Hodge cycles, motives, and Shimura varieties 1982

[9] Drinfel′D, V. G. Elliptic modules Mat. Sb. (N.S.) 1974

[10] Farb, Benson, Dennis, R. Keith Noncommutative algebra 1993

[11] Gekeler, Ernst-Ulrich On the de Rham isomorphism for Drinfel′d modules J. Reine Angew. Math. 1989 188 208

[12] Goss, David Basic structures of function field arithmetic 1996

[13] Papanikolas, Matthew A. Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms Invent. Math. 2008 123 174

[14] Pellarin, Federico Aspects de l’indépendance algébrique en caractéristique non nulle (d’après Anderson, Brownawell, Denis, Papanikolas, Thakur, Yu, et al.) Astérisque 2008

[15] Pink, Richard The Mumford-Tate conjecture for Drinfeld-modules Publ. Res. Inst. Math. Sci. 1997 393 425

[16] Prasad, Gopal, Yu, Jiu-Kang On quasi-reductive group schemes J. Algebraic Geom. 2006 507 549

[17] Thakur, Dinesh S. Function field arithmetic 2004

[18] Thiery, Alain Indépendance algébrique des périodes et quasi-périodes d’un module de Drinfel′d 1992 265 284

[19] Waldschmidt, Michel Elliptic functions and transcendence 2008 143 188

[20] Yu, Jing Transcendence and Drinfel′d modules Invent. Math. 1986 507 517

[21] Yu, Jing On periods and quasi-periods of Drinfel′d modules Compositio Math. 1990 235 245

[22] Yu, Jing Analytic homomorphisms into Drinfeld modules Ann. of Math. (2) 1997 215 233

Cité par Sources :