Voir la notice de l'article provenant de la source American Mathematical Society
Chang, Chieh-Yu 1 ; Papanikolas, Matthew 2
@article{10_1090_S0894_0347_2011_00714_5,
author = {Chang, Chieh-Yu and Papanikolas, Matthew},
title = {Algebraic independence of periods and logarithms of {Drinfeld} modules},
journal = {Journal of the American Mathematical Society},
pages = {123--150},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2012},
doi = {10.1090/S0894-0347-2011-00714-5},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00714-5/}
}
TY - JOUR AU - Chang, Chieh-Yu AU - Papanikolas, Matthew TI - Algebraic independence of periods and logarithms of Drinfeld modules JO - Journal of the American Mathematical Society PY - 2012 SP - 123 EP - 150 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00714-5/ DO - 10.1090/S0894-0347-2011-00714-5 ID - 10_1090_S0894_0347_2011_00714_5 ER -
%0 Journal Article %A Chang, Chieh-Yu %A Papanikolas, Matthew %T Algebraic independence of periods and logarithms of Drinfeld modules %J Journal of the American Mathematical Society %D 2012 %P 123-150 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00714-5/ %R 10.1090/S0894-0347-2011-00714-5 %F 10_1090_S0894_0347_2011_00714_5
Chang, Chieh-Yu; Papanikolas, Matthew. Algebraic independence of periods and logarithms of Drinfeld modules. Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 123-150. doi: 10.1090/S0894-0347-2011-00714-5
[1] ð¡-motives Duke Math. J. 1986 457 502
[2] , , Determination of the algebraic relations among special Î-values in positive characteristic Ann. of Math. (2) 2004 237 313
[3] , Logarithmic forms and Diophantine geometry 2007
[4] Minimal extensions of algebraic groups and linear independence J. Number Theory 2001 239 254
[5] , Linear independence of gamma values in positive characteristic J. Reine Angew. Math. 2002 91 148
[6] , , Pseudo-reductive groups 2010
[7] , Périodes de modules de âlâindépendance quadratique en rang IIâ J. Ramanujan Math. Soc. 2002 65 83
[8] , , , Hodge cycles, motives, and Shimura varieties 1982
[9] Elliptic modules Mat. Sb. (N.S.) 1974
[10] , Noncommutative algebra 1993
[11] On the de Rham isomorphism for Drinfelâ²d modules J. Reine Angew. Math. 1989 188 208
[12] Basic structures of function field arithmetic 1996
[13] Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms Invent. Math. 2008 123 174
[14] Aspects de lâindépendance algébrique en caractéristique non nulle (dâaprès Anderson, Brownawell, Denis, Papanikolas, Thakur, Yu, et al.) Astérisque 2008
[15] The Mumford-Tate conjecture for Drinfeld-modules Publ. Res. Inst. Math. Sci. 1997 393 425
[16] , On quasi-reductive group schemes J. Algebraic Geom. 2006 507 549
[17] Function field arithmetic 2004
[18] Indépendance algébrique des périodes et quasi-périodes dâun module de Drinfelâ²d 1992 265 284
[19] Elliptic functions and transcendence 2008 143 188
[20] Transcendence and Drinfelâ²d modules Invent. Math. 1986 507 517
[21] On periods and quasi-periods of Drinfelâ²d modules Compositio Math. 1990 235 245
[22] Analytic homomorphisms into Drinfeld modules Ann. of Math. (2) 1997 215 233
Cité par Sources :