Nice infinitary logics
Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 395-427

Voir la notice de l'article provenant de la source American Mathematical Society

We deal with soft model theory of infinitary logics. We find a logic between $\mathbb {L}_{\infty ,\aleph _0}$ and $\mathbb {L}_{\infty ,\infty }$ which has some striking properties. First, it has interpolations (it was known that each of those logics fails interpolation though the pair has interpolation). Second, well ordering is not characterized in a strong way. Third, it can be characterized as the maximal such nice logic (in fact, it is the maximal logic stronger than $\mathbb {L}_{\infty ,\aleph _0}$ and which satisfies “well ordering is not characterized in a strong way”).
DOI : 10.1090/S0894-0347-2011-00712-1

Shelah, Saharon 1, 2

1 Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
2 Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, New Jersey 08854-8019
@article{10_1090_S0894_0347_2011_00712_1,
     author = {Shelah, Saharon},
     title = {Nice infinitary logics},
     journal = {Journal of the American Mathematical Society},
     pages = {395--427},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00712-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00712-1/}
}
TY  - JOUR
AU  - Shelah, Saharon
TI  - Nice infinitary logics
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 395
EP  - 427
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00712-1/
DO  - 10.1090/S0894-0347-2011-00712-1
ID  - 10_1090_S0894_0347_2011_00712_1
ER  - 
%0 Journal Article
%A Shelah, Saharon
%T Nice infinitary logics
%J Journal of the American Mathematical Society
%D 2012
%P 395-427
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00712-1/
%R 10.1090/S0894-0347-2011-00712-1
%F 10_1090_S0894_0347_2011_00712_1
Shelah, Saharon. Nice infinitary logics. Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 395-427. doi: 10.1090/S0894-0347-2011-00712-1

[1] Model-theoretic logics 1985

[2] Dickmann, M. A. Larger infinitary languages 1985 317 363

[3] Eklof, Paul C., Mekler, Alan H. Almost free modules 2002

[4] Feferman, S., Vaught, R. L. The first order properties of products of algebraic systems Fund. Math. 1959 57 103

[5] Koppelberg, Sabine Homogeneous Boolean algebras may have nonsimple automorphism groups Topology Appl. 1985 103 120

[6] Makowsky, J. A. Compactness, embeddings and definability 1985 645 716

[7] Mostowski, Andrzej On direct products of theories J. Symbolic Logic 1952 1 31

[8] Å Tä›Pã¡Nek, Petr, Rubin, Matatyahu Homogeneous Boolean algebras 1989 679 715

[9] Shelah, Saharon Proper forcing 1982

[10] Shelah, Saharon Cardinal arithmetic 1994

[11] Shelah, Saharon The number of non-isomorphic models of an unstable first-order theory Israel J. Math. 1971 473 487

[12] Shelah, Saharon On models with power-like orderings J. Symbolic Logic 1972 247 267

[13] Shelah, Saharon Models with second-order properties. I. Boolean algebras with no definable automorphisms Ann. Math. Logic 1978 57 72

[14] Shelah, Saharon Remarks in abstract model theory Ann. Pure Appl. Logic 1985 255 288

[15] Fuchs, Laszlo, Shelah, Saharon On a non-vanishing Ext Rend. Sem. Mat. Univ. Padova 2003 235 239

[16] Gã¶Bel, Rã¼Diger, Shelah, Saharon Absolutely indecomposable modules Proc. Amer. Math. Soc. 2007 1641 1649

Cité par Sources :