Presentation length and Simon’s conjecture
Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 151-187

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper, we show that any knot group maps onto at most finitely many knot groups. This gives an affirmative answer to a conjecture of J. Simon. We also bound the diameter of a closed hyperbolic 3-manifold linearly in terms of the presentation length of its fundamental group, improving a result of White.
DOI : 10.1090/S0894-0347-2011-00711-X

Agol, Ian 1 ; Liu, Yi 1

1 Department of Mathematics, University of California, Berkeley, 970 Evans Hall #3840, Berkeley, California 94720-3840
@article{10_1090_S0894_0347_2011_00711_X,
     author = {Agol, Ian and Liu, Yi},
     title = {Presentation length and {Simon\^a€™s} conjecture},
     journal = {Journal of the American Mathematical Society},
     pages = {151--187},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00711-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00711-X/}
}
TY  - JOUR
AU  - Agol, Ian
AU  - Liu, Yi
TI  - Presentation length and Simon’s conjecture
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 151
EP  - 187
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00711-X/
DO  - 10.1090/S0894-0347-2011-00711-X
ID  - 10_1090_S0894_0347_2011_00711_X
ER  - 
%0 Journal Article
%A Agol, Ian
%A Liu, Yi
%T Presentation length and Simon’s conjecture
%J Journal of the American Mathematical Society
%D 2012
%P 151-187
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00711-X/
%R 10.1090/S0894-0347-2011-00711-X
%F 10_1090_S0894_0347_2011_00711_X
Agol, Ian; Liu, Yi. Presentation length and Simon’s conjecture. Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 151-187. doi: 10.1090/S0894-0347-2011-00711-X

[1] Boileau, Michel, Boyer, Steve, Reid, Alan W., Wang, Shicheng Simon’s conjecture for two-bridge knots Comm. Anal. Geom. 2010 121 143

[2] Boileau, Michel, Weidmann, Richard The structure of 3-manifolds with two-generated fundamental group Topology 2005 283 320

[3] Budney, Ryan JSJ-decompositions of knot and link complements in 𝑆³ Enseign. Math. (2) 2006 319 359

[4] Cao, C., Gehring, F. W., Martin, G. J. Lattice constants and a lemma of Zagier 1997 107 120

[5] Cohen, Daniel E. Combinatorial group theory. A topological approach 1978

[6] Cooper, Daryl The volume of a closed hyperbolic 3-manifold is bounded by 𝜋 times the length of any presentation of its fundamental group Proc. Amer. Math. Soc. 1999 941 942

[7] Culler, Marc, Gordon, C. Mca., Luecke, J., Shalen, Peter B. Dehn surgery on knots Ann. of Math. (2) 1987 237 300

[8] Hoste, Jim, Shanahan, Patrick D. Epimorphisms and boundary slopes of 2-bridge knots Algebr. Geom. Topol. 2010 1221 1244

[9] Problems in low-dimensional topology 1997 35 473

[10] Kitano, Teruaki, Suzuki, Masaaki Twisted Alexander polynomials and a partial order on the set of prime knots 2008 307 321

[11] Martin, Gaven J. Triangle subgroups of Kleinian groups Comment. Math. Helv. 1996 339 361

[12] Mccullough, Darryl Compact submanifolds of 3-manifolds with boundary Quart. J. Math. Oxford Ser. (2) 1986 299 307

[13] Ohtsuki, Tomotada, Riley, Robert, Sakuma, Makoto Epimorphisms between 2-bridge link groups 2008 417 450

[14] Papakyriakopoulos, C. D. On Dehn’s lemma and the asphericity of knots Ann. of Math. (2) 1957 1 26

[15] Rafalski, Shawn Immersed turnovers in hyperbolic 3-orbifolds Groups Geom. Dyn. 2010 333 376

[16] Scott, G. P. Compact submanifolds of 3-manifolds J. London Math. Soc. (2) 1973 246 250

[17] Sela, Zlil Diophantine geometry over groups. I. Makanin-Razborov diagrams Publ. Math. Inst. Hautes Études Sci. 2001 31 105

[18] Silver, Daniel S., Whitten, Wilbur Hyperbolic covering knots Algebr. Geom. Topol. 2005 1451 1469

[19] Silver, Daniel S., Whitten, Wilbur Knot group epimorphisms J. Knot Theory Ramifications 2006 153 166

[20] Soma, Teruhiko The Gromov invariant of links Invent. Math. 1981 445 454

[21] Weidmann, Richard The Nielsen method for groups acting on trees Proc. London Math. Soc. (3) 2002 93 118

Cité par Sources :