A proof of the positive density conjecture for integer Apollonian circle packings
Journal of the American Mathematical Society, Tome 24 (2011) no. 4, pp. 945-967

Voir la notice de l'article provenant de la source American Mathematical Society

An Apollonian circle packing (ACP) is an ancient Greek construction which is made by repeatedly inscribing circles into the triangular interstices in a Descartes configuration of four mutually tangent circles. Remarkably, if the original four circles have integer curvature, all of the circles in the packing will have integer curvature as well. In this paper, we compute a lower bound for the number $\kappa (P,X)$ of integers less than $X$ occurring as curvatures in a bounded integer ACP $P$, and prove a conjecture of Graham, Lagarias, Mallows, Wilkes, and Yan that the ratio $\kappa (P,X)/X$ is greater than $0$ for $X$ tending to infinity.
DOI : 10.1090/S0894-0347-2011-00707-8

Bourgain, Jean 1 ; Fuchs, Elena 1

1 Institute for Advanced Study, School of Mathematics, Einstein Drive, Princeton, New Jersey 08540
@article{10_1090_S0894_0347_2011_00707_8,
     author = {Bourgain, Jean and Fuchs, Elena},
     title = {A proof of the positive density conjecture for integer {Apollonian} circle packings},
     journal = {Journal of the American Mathematical Society},
     pages = {945--967},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2011},
     doi = {10.1090/S0894-0347-2011-00707-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00707-8/}
}
TY  - JOUR
AU  - Bourgain, Jean
AU  - Fuchs, Elena
TI  - A proof of the positive density conjecture for integer Apollonian circle packings
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 945
EP  - 967
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00707-8/
DO  - 10.1090/S0894-0347-2011-00707-8
ID  - 10_1090_S0894_0347_2011_00707_8
ER  - 
%0 Journal Article
%A Bourgain, Jean
%A Fuchs, Elena
%T A proof of the positive density conjecture for integer Apollonian circle packings
%J Journal of the American Mathematical Society
%D 2011
%P 945-967
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00707-8/
%R 10.1090/S0894-0347-2011-00707-8
%F 10_1090_S0894_0347_2011_00707_8
Bourgain, Jean; Fuchs, Elena. A proof of the positive density conjecture for integer Apollonian circle packings. Journal of the American Mathematical Society, Tome 24 (2011) no. 4, pp. 945-967. doi: 10.1090/S0894-0347-2011-00707-8

[1] Blomer, Valentin, Granville, Andrew Estimates for representation numbers of quadratic forms Duke Math. J. 2006 261 302

[2] Boyd, David W. The sequence of radii of the Apollonian packing Math. Comp. 1982 249 254

[3] Cassels, J. W. S. Rational quadratic forms 1978

[4] Coxeter, H. S. M. An absolute property of four mutually tangent circles 2006 109 114

[5] Duke, W., Rudnick, Z., Sarnak, P. Density of integer points on affine homogeneous varieties Duke Math. J. 1993 143 179

[6] Elstrodt, J., Grunewald, F., Mennicke, J. Groups acting on hyperbolic space 1998

[7] Estermann, T. A new application of the Hardy-Littlewood-Kloosterman method Proc. London Math. Soc. (3) 1962 425 444

[8] Friedlander, John, Iwaniec, Henryk Opera de cribro 2010

[9] Graham, Ronald L., Lagarias, Jeffrey C., Mallows, Colin L., Wilks, Allan R., Yan, Catherine H. Apollonian circle packings: number theory J. Number Theory 2003 1 45

[10] Graham, Ronald L., Lagarias, Jeffrey C., Mallows, Colin L., Wilks, Allan R., Yan, Catherine H. Apollonian circle packings: geometry and group theory. I. The Apollonian group Discrete Comput. Geom. 2005 547 585

[11] Heath-Brown, D. R. A new form of the circle method, and its application to quadratic forms J. Reine Angew. Math. 1996 149 206

[12] Kasner, Edward, Supnick, Fred The Apollonian packing of circles Proc. Nat. Acad. Sci. U.S.A. 1943 378 384

[13] Iwaniec, Henryk, Kowalski, Emmanuel Analytic number theory 2004

[14] Katok, Svetlana Fuchsian groups 1992

Cité par Sources :