Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_2011_00706_6,
author = {Ioana, Adrian},
title = {W*\^asuperrigidity for {Bernoulli} actions of property {(T)} groups},
journal = {Journal of the American Mathematical Society},
pages = {1175--1226},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2011},
doi = {10.1090/S0894-0347-2011-00706-6},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00706-6/}
}
TY - JOUR AU - Ioana, Adrian TI - W*âsuperrigidity for Bernoulli actions of property (T) groups JO - Journal of the American Mathematical Society PY - 2011 SP - 1175 EP - 1226 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00706-6/ DO - 10.1090/S0894-0347-2011-00706-6 ID - 10_1090_S0894_0347_2011_00706_6 ER -
%0 Journal Article %A Ioana, Adrian %T W*âsuperrigidity for Bernoulli actions of property (T) groups %J Journal of the American Mathematical Society %D 2011 %P 1175-1226 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00706-6/ %R 10.1090/S0894-0347-2011-00706-6 %F 10_1090_S0894_0347_2011_00706_6
Ioana, Adrian. W*âsuperrigidity for Bernoulli actions of property (T) groups. Journal of the American Mathematical Society, Tome 24 (2011) no. 4, pp. 1175-1226. doi: 10.1090/S0894-0347-2011-00706-6
[1] , , Kazhdanâs property (T) 2008
[2] , ð¶*-algebras and finite-dimensional approximations 2008
[3] Kazhdan constants for ðð¿(3,ð) J. Reine Angew. Math. 1991 36 67
[4] Sur la classification des facteurs de type ð¼ð¼ C. R. Acad. Sci. Paris Sér. A-B 1975
[5] A factor of type ð¼ð¼â with countable fundamental group J. Operator Theory 1980 151 153
[6] , , An amenable equivalence relation is generated by a single transformation Ergodic Theory Dynam. Systems 1981
[7] , Ergodic subequivalence relations induced by a Bernoulli action Geom. Funct. Anal. 2010 53 67
[8] , A ð¼ð¼â factor with two nonconjugate Cartan subalgebras Bull. Amer. Math. Soc. (N.S.) 1982 211 212
[9] , Property ð for von Neumann algebras Bull. London Math. Soc. 1985 57 62
[10] Orbit equivalence rigidity Ann. of Math. (2) 1999 1083 1108
[11] , Ergodic equivalence relations, cohomology, and von Neumann algebras. II Trans. Amer. Math. Soc. 1977 325 359
[12] Rigidity results for wreath product ð¼ð¼â factors J. Funct. Anal. 2007 763 791
[13] Non-orbit equivalent actions of ð½_{ð} Ann. Sci. Ãc. Norm. Supér. (4) 2009 675 696
[14] , , Amalgamated free products of weakly rigid factors and calculation of their symmetry groups Acta Math. 2008 85 153
[15] A ð¼ð¼â factor anti-isomorphic to itself but without involutory antiautomorphisms Math. Scand. 1980 103 117
[16] , Fundamentals of the theory of operator algebras. Vol. II 1986
[17] On the connection of the dual space of a group with the structure of its closed subgroups Funkcional. Anal. i Priložen. 1967 71 74
[18] Measure equivalence rigidity of the mapping class group Ann. of Math. (2) 2010 1851 1901
[19] Finitely-additive invariant measures on Euclidean spaces Ergodic Theory Dynam. Systems 1982
[20] , On rings of operators Ann. of Math. (2) 1936 116 229
[21] , On rings of operators. IV Ann. of Math. (2) 1943 716 808
[22] , Ergodic theory of amenable group actions. I. The Rohlin lemma Bull. Amer. Math. Soc. (N.S.) 1980 161 164
[23] Solid von Neumann algebras Acta Math. 2004 111 117
[24] , On a class of ð¼ð¼â factors with at most one Cartan subalgebra Ann. of Math. (2) 2010 713 749
[25] ð¿Â²-rigidity in von Neumann algebras Invent. Math. 2009 417 433
[26] Strong rigidity of ð¼ð¼â factors arising from malleable actions of ð¤-rigid groups. I Invent. Math. 2006 369 408
[27] Strong rigidity of ð¼ð¼â factors arising from malleable actions of ð¤-rigid groups. II Invent. Math. 2006 409 451
[28] On a class of type ð¼ð¼â factors with Betti numbers invariants Ann. of Math. (2) 2006 809 899
[29] Some rigidity results for non-commutative Bernoulli shifts J. Funct. Anal. 2006 273 328
[30] Cocycle and orbit equivalence superrigidity for malleable actions of ð¤-rigid groups Invent. Math. 2007 243 295
[31] Deformation and rigidity for group actions and von Neumann algebras 2007 445 477
[32] On the superrigidity of malleable actions with spectral gap J. Amer. Math. Soc. 2008 981 1000
[33] , Strong rigidity of generalized Bernoulli actions and computations of their symmetry groups Adv. Math. 2008 833 872
[34] , On the fundamental group of ð¼ð¼â factors and equivalence relations arising from group actions 2010 519 541
[35] , Group measure space decomposition of ð¼ð¼â factors and ð*-superrigidity Invent. Math. 2010 371 417
[36] Automorphisms of finite factors Amer. J. Math. 1955 117 133
[37] Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa) Astérisque 2007
[38] Explicit computations of all finite index bimodules for a family of ð¼ð¼â factors Ann. Sci. Ãc. Norm. Supér. (4) 2008 743 788
[39] Factors of type IIâ without non-trivial finite index subfactors Trans. Amer. Math. Soc. 2009 2587 2606
Cité par Sources :