W*–superrigidity for Bernoulli actions of property (T) groups
Journal of the American Mathematical Society, Tome 24 (2011) no. 4, pp. 1175-1226

Voir la notice de l'article provenant de la source American Mathematical Society

We consider group measure space II$_{1}$ factors $M=L^{\infty }(X)\rtimes \Gamma$ arising from Bernoulli actions of ICC property (T) groups $\Gamma$ (more generally, of groups $\Gamma$ containing an infinite normal subgroup with the relative property (T)) and prove a rigidity result for $*$–homomorphisms $\theta :M\rightarrow M\overline {\otimes }M$. We deduce that the action $\Gamma \curvearrowright X$ is W$^{*}$–superrigid, i.e. if $\Lambda \curvearrowright Y$ is any free, ergodic, measure preserving action such that the factors $M=L^{\infty }(X)\rtimes \Gamma$ and $L^{\infty }(Y)\rtimes \Lambda$ are isomorphic, then the actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ must be conjugate. Moreover, we show that if $p\in M\setminus \{1\}$ is a projection, then $pMp$ does not admit a group measure space decomposition nor a group von Neumann algebra decomposition (the latter under the additional assumption that $\Gamma$ is torsion free). We also prove a rigidity result for $*$–homomorphisms $\theta :M\rightarrow M$, this time for $\Gamma$ in a larger class of groups than above, now including products of non–amenable groups. For certain groups $\Gamma$, e.g. $\Gamma =\mathbb {F}_{2}\times \mathbb {F}_{2}$, we deduce that $M$ does not embed into $pMp$, for any projection $p\in M\setminus \{1\}$, and obtain a description of the endomorphism semigroup of $M$.
DOI : 10.1090/S0894-0347-2011-00706-6

Ioana, Adrian 1

1 Department of Mathematics, UCLA, Los Angeles, California 91125 and IMAR, 21 Calea Grivitei Street, 010702 Bucharest, Romania
@article{10_1090_S0894_0347_2011_00706_6,
     author = {Ioana, Adrian},
     title = {W*\^a€“superrigidity for {Bernoulli} actions of property {(T)} groups},
     journal = {Journal of the American Mathematical Society},
     pages = {1175--1226},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2011},
     doi = {10.1090/S0894-0347-2011-00706-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00706-6/}
}
TY  - JOUR
AU  - Ioana, Adrian
TI  - W*–superrigidity for Bernoulli actions of property (T) groups
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 1175
EP  - 1226
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00706-6/
DO  - 10.1090/S0894-0347-2011-00706-6
ID  - 10_1090_S0894_0347_2011_00706_6
ER  - 
%0 Journal Article
%A Ioana, Adrian
%T W*–superrigidity for Bernoulli actions of property (T) groups
%J Journal of the American Mathematical Society
%D 2011
%P 1175-1226
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00706-6/
%R 10.1090/S0894-0347-2011-00706-6
%F 10_1090_S0894_0347_2011_00706_6
Ioana, Adrian. W*–superrigidity for Bernoulli actions of property (T) groups. Journal of the American Mathematical Society, Tome 24 (2011) no. 4, pp. 1175-1226. doi: 10.1090/S0894-0347-2011-00706-6

[1] Bekka, Bachir, De La Harpe, Pierre, Valette, Alain Kazhdan’s property (T) 2008

[2] Brown, Nathanial P., Ozawa, Narutaka 𝐶*-algebras and finite-dimensional approximations 2008

[3] Burger, M. Kazhdan constants for 𝑆𝐿(3,𝑍) J. Reine Angew. Math. 1991 36 67

[4] Connes, Alain Sur la classification des facteurs de type 𝐼𝐼 C. R. Acad. Sci. Paris Sér. A-B 1975

[5] Connes, A. A factor of type 𝐼𝐼₁ with countable fundamental group J. Operator Theory 1980 151 153

[6] Connes, A., Feldman, J., Weiss, B. An amenable equivalence relation is generated by a single transformation Ergodic Theory Dynam. Systems 1981

[7] Chifan, Ionut, Ioana, Adrian Ergodic subequivalence relations induced by a Bernoulli action Geom. Funct. Anal. 2010 53 67

[8] Connes, A., Jones, V. A 𝐼𝐼₁ factor with two nonconjugate Cartan subalgebras Bull. Amer. Math. Soc. (N.S.) 1982 211 212

[9] Connes, A., Jones, V. Property 𝑇 for von Neumann algebras Bull. London Math. Soc. 1985 57 62

[10] Furman, Alex Orbit equivalence rigidity Ann. of Math. (2) 1999 1083 1108

[11] Feldman, Jacob, Moore, Calvin C. Ergodic equivalence relations, cohomology, and von Neumann algebras. II Trans. Amer. Math. Soc. 1977 325 359

[12] Ioana, Adrian Rigidity results for wreath product 𝐼𝐼₁ factors J. Funct. Anal. 2007 763 791

[13] Ioana, Adrian Non-orbit equivalent actions of 𝔽_{𝕟} Ann. Sci. Éc. Norm. Supér. (4) 2009 675 696

[14] Ioana, Adrian, Peterson, Jesse, Popa, Sorin Amalgamated free products of weakly rigid factors and calculation of their symmetry groups Acta Math. 2008 85 153

[15] Jones, V. F. R. A 𝐼𝐼₁ factor anti-isomorphic to itself but without involutory antiautomorphisms Math. Scand. 1980 103 117

[16] Kadison, Richard V., Ringrose, John R. Fundamentals of the theory of operator algebras. Vol. II 1986

[17] Kaå¾Dan, D. A. On the connection of the dual space of a group with the structure of its closed subgroups Funkcional. Anal. i Priložen. 1967 71 74

[18] Kida, Yoshikata Measure equivalence rigidity of the mapping class group Ann. of Math. (2) 2010 1851 1901

[19] Margulis, G. A. Finitely-additive invariant measures on Euclidean spaces Ergodic Theory Dynam. Systems 1982

[20] Murray, F. J., Von Neumann, J. On rings of operators Ann. of Math. (2) 1936 116 229

[21] Murray, F. J., Von Neumann, J. On rings of operators. IV Ann. of Math. (2) 1943 716 808

[22] Ornstein, Donald S., Weiss, Benjamin Ergodic theory of amenable group actions. I. The Rohlin lemma Bull. Amer. Math. Soc. (N.S.) 1980 161 164

[23] Ozawa, Narutaka Solid von Neumann algebras Acta Math. 2004 111 117

[24] Ozawa, Narutaka, Popa, Sorin On a class of 𝐼𝐼₁ factors with at most one Cartan subalgebra Ann. of Math. (2) 2010 713 749

[25] Peterson, Jesse 𝐿²-rigidity in von Neumann algebras Invent. Math. 2009 417 433

[26] Popa, Sorin Strong rigidity of 𝐼𝐼₁ factors arising from malleable actions of 𝑤-rigid groups. I Invent. Math. 2006 369 408

[27] Popa, Sorin Strong rigidity of 𝐼𝐼₁ factors arising from malleable actions of 𝑤-rigid groups. II Invent. Math. 2006 409 451

[28] Popa, Sorin On a class of type 𝐼𝐼₁ factors with Betti numbers invariants Ann. of Math. (2) 2006 809 899

[29] Popa, Sorin Some rigidity results for non-commutative Bernoulli shifts J. Funct. Anal. 2006 273 328

[30] Popa, Sorin Cocycle and orbit equivalence superrigidity for malleable actions of 𝑤-rigid groups Invent. Math. 2007 243 295

[31] Popa, Sorin Deformation and rigidity for group actions and von Neumann algebras 2007 445 477

[32] Popa, Sorin On the superrigidity of malleable actions with spectral gap J. Amer. Math. Soc. 2008 981 1000

[33] Popa, Sorin, Vaes, Stefaan Strong rigidity of generalized Bernoulli actions and computations of their symmetry groups Adv. Math. 2008 833 872

[34] Popa, Sorin, Vaes, Stefaan On the fundamental group of 𝐼𝐼₁ factors and equivalence relations arising from group actions 2010 519 541

[35] Popa, Sorin, Vaes, Stefaan Group measure space decomposition of 𝐼𝐼₁ factors and 𝑊*-superrigidity Invent. Math. 2010 371 417

[36] Singer, I. M. Automorphisms of finite factors Amer. J. Math. 1955 117 133

[37] Vaes, Stefaan Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa) Astérisque 2007

[38] Vaes, Stefaan Explicit computations of all finite index bimodules for a family of 𝐼𝐼₁ factors Ann. Sci. Éc. Norm. Supér. (4) 2008 743 788

[39] Vaes, Stefaan Factors of type II₁ without non-trivial finite index subfactors Trans. Amer. Math. Soc. 2009 2587 2606

Cité par Sources :