Ramírez, José  1 ; Rider, Brian  2 ; Virág, Bálint  3
@article{10_1090_S0894_0347_2011_00703_0,
author = {Ram{\'\i}rez, Jos\'e and Rider, Brian and Vir\'ag, B\'alint},
title = {Beta ensembles, stochastic {Airy} spectrum, and a diffusion},
journal = {Journal of the American Mathematical Society},
pages = {919--944},
year = {2011},
volume = {24},
number = {4},
doi = {10.1090/S0894-0347-2011-00703-0},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00703-0/}
}
TY - JOUR AU - Ramírez, José AU - Rider, Brian AU - Virág, Bálint TI - Beta ensembles, stochastic Airy spectrum, and a diffusion JO - Journal of the American Mathematical Society PY - 2011 SP - 919 EP - 944 VL - 24 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00703-0/ DO - 10.1090/S0894-0347-2011-00703-0 ID - 10_1090_S0894_0347_2011_00703_0 ER -
%0 Journal Article %A Ramírez, José %A Rider, Brian %A Virág, Bálint %T Beta ensembles, stochastic Airy spectrum, and a diffusion %J Journal of the American Mathematical Society %D 2011 %P 919-944 %V 24 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00703-0/ %R 10.1090/S0894-0347-2011-00703-0 %F 10_1090_S0894_0347_2011_00703_0
Ramírez, José; Rider, Brian; Virág, Bálint. Beta ensembles, stochastic Airy spectrum, and a diffusion. Journal of the American Mathematical Society, Tome 24 (2011) no. 4, pp. 919-944. doi: 10.1090/S0894-0347-2011-00703-0
[1] , , On the distribution of the length of the longest increasing subsequence of random permutations J. Amer. Math. Soc. 1999 1119 1178
[2] , , Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices Ann. Probab. 2005 1643 1697
[3] , , Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function Comm. Math. Phys. 2008 463 497
[4] GUEs and queues Probab. Theory Related Fields 2001 256 274
[5] , The ground state eigenvalue of Hill’s equation with white noise potential Comm. Pure Appl. Math. 1999 1277 1294
[6] , , On the shape of the ground state eigenvalue density of a random Hill’s equation Comm. Pure Appl. Math. 2006 935 976
[7] Orthogonal polynomials and random matrices: a Riemann-Hilbert approach 1999
[8] , Random matrix theory: invariant ensembles and universality 2009
[9] , Hermite and Laguerre 𝛽-ensembles: asymptotic corrections to the eigenvalue density Nuclear Phys. B 2006 307 332
[10] Distribution functions for edge eigenvalues in orthogonal and symplectic ensembles: Painlevé representations Int. Math. Res. Not. 2005 2263 2287
[11] , Matrix models for beta ensembles J. Math. Phys. 2002 5830 5847
[12] , From random matrices to stochastic operators J. Stat. Phys. 2007 1121 1165
[13] Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices Ann. Probab. 2007 663 714
[14] , Markov processes 1986
[15] , Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process Comm. Math. Phys. 2006 1 44
[16] Log-gases and random matrices 2010
[17] Green’s functions for a particle in a one-dimensional random potential Phys. Rev. (2) 1965
[18] Shape fluctuations and random matrices Comm. Math. Phys. 2000 437 476
[19] On the distribution of the largest eigenvalue in principal components analysis Ann. Statist. 2001 295 327
[20] , Eigenvalue statistics for CMV matrices: from Poisson to clock via random matrix ensembles Duke Math. J. 2009 361 399
[21] A limit law for the ground state of Hill’s equation J. Statist. Phys. 1994 1227 1232
[22] , Scale invariance of the PNG droplet and the Airy process J. Statist. Phys. 2002 1071 1106
[23] , Diffusion at the random matrix hard edge Comm. Math. Phys. 2009 887 906
[24] The stochastic operator approach to random matrix theory 2005
[25] , Level-spacing distributions and the Airy kernel Comm. Math. Phys. 1994 151 174
[26] , On orthogonal and symplectic matrix ensembles Comm. Math. Phys. 1996 727 754
[27] Eigenvalue distributions of large Hermitian matrices Adv. in Math. 1984 67 82
[28] , Continuum limits of random matrices and the Brownian carousel Invent. Math. 2009 463 508
[29] , Large gaps between random eigenvalues Ann. Probab. 2010 1263 1279
Cité par Sources :