Beta ensembles, stochastic Airy spectrum, and a diffusion
Journal of the American Mathematical Society, Tome 24 (2011) no. 4, pp. 919-944

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that the largest eigenvalues of the beta ensembles of random matrix theory converge in distribution to the low-lying eigenvalues of the random Schrödinger operator $-\frac {d^2}{dx^2} + x + \frac {2}{\sqrt {\beta }} b_x^{\prime }$ restricted to the positive half-line, where $b_x^{\prime }$ is white noise. In doing so we extend the definition of the Tracy-Widom($\beta$) distributions to all $\beta >0$ and also analyze their tails. Last, in a parallel development, we provide a second characterization of these laws in terms of a one-dimensional diffusion. The proofs rely on the associated tridiagonal matrix models and a universality result showing that the spectrum of such models converges to that of their continuum operator limit. In particular, we show how Tracy-Widom laws arise from a functional central limit theorem.
DOI : 10.1090/S0894-0347-2011-00703-0

Ramírez, José 1 ; Rider, Brian 2 ; Virág, Bálint 3

1 Department of Mathematics, Universidad de Costa Rica, San Jose 2060, Costa Rica
2 Department of Mathematics, University of Colorado at Boulder, UCB 395, Boulder, Colorado 80309
3 Department of Mathematics and Statistics, University of Toronto, Ontario, M5S 2E4, Canada
@article{10_1090_S0894_0347_2011_00703_0,
     author = {Ram\~A\-rez, Jos\~A{\textcopyright} and Rider, Brian and Vir\~A{\textexclamdown}g, B\~A{\textexclamdown}lint},
     title = {Beta ensembles, stochastic {Airy} spectrum, and a diffusion},
     journal = {Journal of the American Mathematical Society},
     pages = {919--944},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2011},
     doi = {10.1090/S0894-0347-2011-00703-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00703-0/}
}
TY  - JOUR
AU  - Ramírez, José
AU  - Rider, Brian
AU  - Virág, Bálint
TI  - Beta ensembles, stochastic Airy spectrum, and a diffusion
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 919
EP  - 944
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00703-0/
DO  - 10.1090/S0894-0347-2011-00703-0
ID  - 10_1090_S0894_0347_2011_00703_0
ER  - 
%0 Journal Article
%A Ramírez, José
%A Rider, Brian
%A Virág, Bálint
%T Beta ensembles, stochastic Airy spectrum, and a diffusion
%J Journal of the American Mathematical Society
%D 2011
%P 919-944
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00703-0/
%R 10.1090/S0894-0347-2011-00703-0
%F 10_1090_S0894_0347_2011_00703_0
Ramírez, José; Rider, Brian; Virág, Bálint. Beta ensembles, stochastic Airy spectrum, and a diffusion. Journal of the American Mathematical Society, Tome 24 (2011) no. 4, pp. 919-944. doi: 10.1090/S0894-0347-2011-00703-0

[1] Baik, Jinho, Deift, Percy, Johansson, Kurt On the distribution of the length of the longest increasing subsequence of random permutations J. Amer. Math. Soc. 1999 1119 1178

[2] Baik, Jinho, Ben Arous, Gã©Rard, Pã©Chã©, Sandrine Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices Ann. Probab. 2005 1643 1697

[3] Baik, Jinho, Buckingham, Robert, Difranco, Jeffery Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function Comm. Math. Phys. 2008 463 497

[4] Baryshnikov, Yu. GUEs and queues Probab. Theory Related Fields 2001 256 274

[5] Cambronero, S., Mckean, H. P. The ground state eigenvalue of Hill’s equation with white noise potential Comm. Pure Appl. Math. 1999 1277 1294

[6] Cambronero, Santiago, Rider, B., Ramã­Rez, Josã© On the shape of the ground state eigenvalue density of a random Hill’s equation Comm. Pure Appl. Math. 2006 935 976

[7] Deift, P. A. Orthogonal polynomials and random matrices: a Riemann-Hilbert approach 1999

[8] Deift, Percy, Gioev, Dimitri Random matrix theory: invariant ensembles and universality 2009

[9] Desrosiers, Patrick, Forrester, Peter J. Hermite and Laguerre 𝛽-ensembles: asymptotic corrections to the eigenvalue density Nuclear Phys. B 2006 307 332

[10] Dieng, Momar Distribution functions for edge eigenvalues in orthogonal and symplectic ensembles: Painlevé representations Int. Math. Res. Not. 2005 2263 2287

[11] Dumitriu, Ioana, Edelman, Alan Matrix models for beta ensembles J. Math. Phys. 2002 5830 5847

[12] Edelman, Alan, Sutton, Brian D. From random matrices to stochastic operators J. Stat. Phys. 2007 1121 1165

[13] El Karoui, Noureddine Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices Ann. Probab. 2007 663 714

[14] Ethier, Stewart N., Kurtz, Thomas G. Markov processes 1986

[15] Ferrari, Patrik L., Spohn, Herbert Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process Comm. Math. Phys. 2006 1 44

[16] Forrester, P. J. Log-gases and random matrices 2010

[17] Halperin, Bertrand I. Green’s functions for a particle in a one-dimensional random potential Phys. Rev. (2) 1965

[18] Johansson, Kurt Shape fluctuations and random matrices Comm. Math. Phys. 2000 437 476

[19] Johnstone, Iain M. On the distribution of the largest eigenvalue in principal components analysis Ann. Statist. 2001 295 327

[20] Killip, Rowan, Stoiciu, Mihai Eigenvalue statistics for CMV matrices: from Poisson to clock via random matrix ensembles Duke Math. J. 2009 361 399

[21] Mckean, H. P. A limit law for the ground state of Hill’s equation J. Statist. Phys. 1994 1227 1232

[22] Prã¤Hofer, Michael, Spohn, Herbert Scale invariance of the PNG droplet and the Airy process J. Statist. Phys. 2002 1071 1106

[23] Ramã­Rez, Josã© A., Rider, Brian Diffusion at the random matrix hard edge Comm. Math. Phys. 2009 887 906

[24] Sutton, Brian D. The stochastic operator approach to random matrix theory 2005

[25] Tracy, Craig A., Widom, Harold Level-spacing distributions and the Airy kernel Comm. Math. Phys. 1994 151 174

[26] Tracy, Craig A., Widom, Harold On orthogonal and symplectic matrix ensembles Comm. Math. Phys. 1996 727 754

[27] Trotter, Hale F. Eigenvalue distributions of large Hermitian matrices Adv. in Math. 1984 67 82

[28] Valkã³, Benedek, Virã¡G, Bã¡Lint Continuum limits of random matrices and the Brownian carousel Invent. Math. 2009 463 508

[29] Valkã³, Benedek, Virã¡G, Bã¡Lint Large gaps between random eigenvalues Ann. Probab. 2010 1263 1279

Cité par Sources :