Mass equidistribution for automorphic forms of cohomological type on 𝐺𝐿₂
Journal of the American Mathematical Society, Tome 24 (2011) no. 4, pp. 1051-1103

Voir la notice de l'article provenant de la source American Mathematical Society

We extend Holowinsky and Soundararajan’s proof of quantum unique ergodicity for holomorphic Hecke modular forms on $SL(2,\mathbb {Z})$, by establishing it for automorphic forms of cohomological type on $GL_2$ over an arbitrary number field which satisfy the Ramanujan bounds. In particular, we have unconditional theorems over totally real and imaginary quadratic fields. In the totally real case we show that our result implies the equidistribution of the zero divisors of holomorphic Hecke modular forms, generalising a result of Rudnick over $\mathbb {Q}$.
DOI : 10.1090/S0894-0347-2011-00700-5

Marshall, Simon 1

1 School of Mathematics, The Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
@article{10_1090_S0894_0347_2011_00700_5,
     author = {Marshall, Simon},
     title = {Mass equidistribution for automorphic forms of cohomological type on {\dh}{\textordmasculine}{\dh}{\textquestiondown}\^a‚‚},
     journal = {Journal of the American Mathematical Society},
     pages = {1051--1103},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2011},
     doi = {10.1090/S0894-0347-2011-00700-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00700-5/}
}
TY  - JOUR
AU  - Marshall, Simon
TI  - Mass equidistribution for automorphic forms of cohomological type on 𝐺𝐿₂
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 1051
EP  - 1103
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00700-5/
DO  - 10.1090/S0894-0347-2011-00700-5
ID  - 10_1090_S0894_0347_2011_00700_5
ER  - 
%0 Journal Article
%A Marshall, Simon
%T Mass equidistribution for automorphic forms of cohomological type on 𝐺𝐿₂
%J Journal of the American Mathematical Society
%D 2011
%P 1051-1103
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00700-5/
%R 10.1090/S0894-0347-2011-00700-5
%F 10_1090_S0894_0347_2011_00700_5
Marshall, Simon. Mass equidistribution for automorphic forms of cohomological type on 𝐺𝐿₂. Journal of the American Mathematical Society, Tome 24 (2011) no. 4, pp. 1051-1103. doi: 10.1090/S0894-0347-2011-00700-5

[1] Borel, A., Wallach, N. Continuous cohomology, discrete subgroups, and representations of reductive groups 2000

[2] Berger, Tobias, Harcos, Gergely 𝑙-adic representations associated to modular forms over imaginary quadratic fields Int. Math. Res. Not. IMRN 2007

[3] Blasius, Don Hilbert modular forms and the Ramanujan conjecture 2006 35 56

[4] Blomer, Valentin, Harcos, Gergely Twisted 𝐿-functions over number fields and Hilbert’s eleventh problem Geom. Funct. Anal. 2010 1 52

[5] Efrat, Isaac Y. The Selberg trace formula for 𝑃𝑆𝐿₂(𝑅)ⁿ Mem. Amer. Math. Soc. 1987

[6] Elliott, P. D. T. A., Moreno, C. J., Shahidi, F. On the absolute value of Ramanujan’s 𝜏-function Math. Ann. 1984 507 511

[7] Finis, Tobias, Grunewald, Fritz, Tirao, Paulo The cohomology of lattices in 𝑆𝐿(2,ℂ) Experiment. Math. 2010 29 63

[8] Garrett, Paul B. Decomposition of Eisenstein series: Rankin triple products Ann. of Math. (2) 1987 209 235

[9] Gelbart, Stephen, Jacquet, Herv㩠A relation between automorphic representations of 𝐺𝐿(2) and 𝐺𝐿(3) Ann. Sci. École Norm. Sup. (4) 1978 471 542

[10] Hoffstein, Jeffrey, Lockhart, Paul Coefficients of Maass forms and the Siegel zero Ann. of Math. (2) 1994 161 181

[11] Gradshteyn, I. S., Ryzhik, I. M. Table of integrals, series, and products 2000

[12] Harris, Michael, Soudry, David, Taylor, Richard 𝑙-adic representations associated to modular forms over imaginary quadratic fields. I. Lifting to 𝐺𝑆𝑝₄(𝑄) Invent. Math. 1993 377 411

[13] Hoffstein, Jeffrey, Lockhart, Paul Coefficients of Maass forms and the Siegel zero Ann. of Math. (2) 1994 161 181

[14] Holowinsky, Roman A sieve method for shifted convolution sums Duke Math. J. 2009 401 448

[15] Holowinsky, Roman Sieving for mass equidistribution Ann. of Math. (2) 2010 1499 1516

[16] Holowinsky, Roman, Soundararajan, Kannan Mass equidistribution for Hecke eigenforms Ann. of Math. (2) 2010 1517 1528

[17] Ichino, Atsushi Trilinear forms and the central values of triple product 𝐿-functions Duke Math. J. 2008 281 307

[18] Iwaniec, Henryk, Kowalski, Emmanuel Analytic number theory 2004

[19] Jacquet, H., Langlands, R. P. Automorphic forms on 𝐺𝐿(2) 1970

[20] Lindenstrauss, Elon Invariant measures and arithmetic quantum unique ergodicity Ann. of Math. (2) 2006 165 219

[21] Lindenstrauss, Elon On quantum unique ergodicity for Γ\ℍ×ℍ Internat. Math. Res. Notices 2001 913 933

[22] Liu, Sheng-Chi Equidistribution of Hecke eigenforms on the Hilbert modular varieties J. Number Theory 2007 1 9

[23] Luo, Wenzhi, Sarnak, Peter Mass equidistribution for Hecke eigenforms Comm. Pure Appl. Math. 2003 874 891

[24] Michel, Philippe, Venkatesh, Akshay The subconvexity problem for 𝐺𝐿₂ Publ. Math. Inst. Hautes Études Sci. 2010 171 271

[25] Montgomery, Hugh L., Vaughan, Robert C. Multiplicative number theory. I. Classical theory 2007

[26] Nair, Mohan Multiplicative functions of polynomial values in short intervals Acta Arith. 1992 257 269

[27] Nair, Mohan, Tenenbaum, Gã©Rald Short sums of certain arithmetic functions Acta Math. 1998 119 144

[28] Nonnenmacher, S., Voros, A. Chaotic eigenfunctions in phase space J. Statist. Phys. 1998 431 518

[29] Rudnick, Zeã©V On the asymptotic distribution of zeros of modular forms Int. Math. Res. Not. 2005 2059 2074

[30] Rudnick, Zeã©V, Sarnak, Peter The behaviour of eigenstates of arithmetic hyperbolic manifolds Comm. Math. Phys. 1994 195 213

[31] Sarnak, P. The arithmetic and geometry of some hyperbolic three-manifolds Acta Math. 1983 253 295

[32] Sarnak, Peter Estimates for Rankin-Selberg 𝐿-functions and quantum unique ergodicity J. Funct. Anal. 2001 419 453

[33] Shiffman, Bernard, Zelditch, Steve Distribution of zeros of random and quantum chaotic sections of positive line bundles Comm. Math. Phys. 1999 661 683

[34] Shimizu, Hideo On discontinuous groups operating on the product of the upper half planes Ann. of Math. (2) 1963 33 71

[35] Silberman, Lior, Venkatesh, Akshay On quantum unique ergodicity for locally symmetric spaces Geom. Funct. Anal. 2007 960 998

[36] ŠNirel′Man, A. I. Ergodic properties of eigenfunctions Uspehi Mat. Nauk 1974 181 182

[37] Soundararajan, Kannan Weak subconvexity for central values of 𝐿-functions Ann. of Math. (2) 2010 1469 1498

[38] Soundararajan, Kannan Quantum unique ergodicity for 𝑆𝐿₂(ℤ)\ℍ Ann. of Math. (2) 2010 1529 1538

[39] Watson, Thomas Crawford Rankin triple products and quantum chaos 2002 81

[40] Zelditch, Steven Pseudodifferential analysis on hyperbolic surfaces J. Funct. Anal. 1986 72 105

[41] Zelditch, Steven The averaging method and ergodic theory for pseudo-differential operators on compact hyperbolic surfaces J. Funct. Anal. 1989 38 68

Cité par Sources :