Voir la notice de l'article provenant de la source American Mathematical Society
Andrews, Ben 1 ; Clutterbuck, Julie 2
@article{10_1090_S0894_0347_2011_00699_1,
author = {Andrews, Ben and Clutterbuck, Julie},
title = {Proof of the fundamental gap conjecture},
journal = {Journal of the American Mathematical Society},
pages = {899--916},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2011},
doi = {10.1090/S0894-0347-2011-00699-1},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00699-1/}
}
TY - JOUR AU - Andrews, Ben AU - Clutterbuck, Julie TI - Proof of the fundamental gap conjecture JO - Journal of the American Mathematical Society PY - 2011 SP - 899 EP - 916 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00699-1/ DO - 10.1090/S0894-0347-2011-00699-1 ID - 10_1090_S0894_0347_2011_00699_1 ER -
%0 Journal Article %A Andrews, Ben %A Clutterbuck, Julie %T Proof of the fundamental gap conjecture %J Journal of the American Mathematical Society %D 2011 %P 899-916 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00699-1/ %R 10.1090/S0894-0347-2011-00699-1 %F 10_1090_S0894_0347_2011_00699_1
Andrews, Ben; Clutterbuck, Julie. Proof of the fundamental gap conjecture. Journal of the American Mathematical Society, Tome 24 (2011) no. 3, pp. 899-916. doi: 10.1090/S0894-0347-2011-00699-1
[1] , Lipschitz bounds for solutions of quasilinear parabolic equations in one space variable J. Differential Equations 2009 4268 4283
[2] , Time-interior gradient estimates for quasilinear parabolic equations Indiana Univ. Math. J. 2009 351 380
[3] The Fundamental Gap 2006
[4] , Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials Proc. Amer. Math. Soc. 1989 419 424
[5] , Gradient estimates for the ground state Schrödinger eigenfunction and applications Comm. Math. Phys. 2001 545 550
[6] , Sharp inequalities for heat kernels of Schrödinger operators and applications to spectral gaps J. Funct. Anal. 2000 368 399
[7] On condensation in the free-boson gas and the spectrum of the Laplacian J. Statist. Phys. 1983 623 637
[8] , On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation J. Functional Analysis 1976 366 389
[9] On the spectral gap for fixed membranes Ark. Mat. 2001 65 74
[10] , Elliptic partial differential equations of second order 2001
[11] Double wells Comm. Math. Phys. 1980 239 261
[12] Extremum problems for eigenvalues of elliptic operators 2006
[13] , Variation et optimisation de formes 2005
[14] On the first two eigenvalues of Sturm-Liouville operators Proc. Amer. Math. Soc. 2003 1215 1224
[15] Convex solutions to nonlinear elliptic and parabolic boundary value problems Indiana Univ. Math. J. 1983 603 614
[16] On the spectral gap for compact manifolds J. Differential Geom. 1992 315 330
[17] The eigenvalue gap for one-dimensional convex potentials Proc. Amer. Math. Soc. 1994 815 821
[18] A lower bound for the first eigenvalue of the Laplacian on a compact manifold Indiana Univ. Math. J. 1979 1013 1019
[19] , Estimates of eigenvalues of a compact Riemannian manifold 1980 205 239
[20] Estimates on the lower bound of the first gap Comm. Anal. Geom. 2008 539 563
[21] , An optimal Poincaré inequality for convex domains Arch. Rational Mech. Anal. 1960
[22] , , , An estimate of the gap of the first two eigenvalues in the Schrödinger operator Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1985 319 333
[23] Spectral gaps and rates to equilibrium for diffusions in convex domains Michigan Math. J. 1996 141 157
[24] Gap of the first two eigenvalues of the Schrödinger operator with nonconvex potential Mat. Contemp. 2008 267 285
[25] Nonlinear analysis in geometry 1986 54
[26] An estimate of the gap of the first two eigenvalues in the Schrödinger operator 2003 223 235
[27] , Lower bounds of the gap between the first and second eigenvalues of the Schrödinger operator Trans. Amer. Math. Soc. 1986 341 349
[28] , On the estimate of the first eigenvalue of a compact Riemannian manifold Sci. Sinica Ser. A 1984 1265 1273
Cité par Sources :