Voir la notice de l'article provenant de la source American Mathematical Society
Caffarelli, Luis 1 ; Chan, Chi Hin 2 ; Vasseur, Alexis 3
@article{10_1090_S0894_0347_2011_00698_X,
author = {Caffarelli, Luis and Chan, Chi Hin and Vasseur, Alexis},
title = {Regularity theory for parabolic nonlinear integral operators},
journal = {Journal of the American Mathematical Society},
pages = {849--869},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2011},
doi = {10.1090/S0894-0347-2011-00698-X},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00698-X/}
}
TY - JOUR AU - Caffarelli, Luis AU - Chan, Chi Hin AU - Vasseur, Alexis TI - Regularity theory for parabolic nonlinear integral operators JO - Journal of the American Mathematical Society PY - 2011 SP - 849 EP - 869 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00698-X/ DO - 10.1090/S0894-0347-2011-00698-X ID - 10_1090_S0894_0347_2011_00698_X ER -
%0 Journal Article %A Caffarelli, Luis %A Chan, Chi Hin %A Vasseur, Alexis %T Regularity theory for parabolic nonlinear integral operators %J Journal of the American Mathematical Society %D 2011 %P 849-869 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00698-X/ %R 10.1090/S0894-0347-2011-00698-X %F 10_1090_S0894_0347_2011_00698_X
Caffarelli, Luis; Chan, Chi Hin; Vasseur, Alexis. Regularity theory for parabolic nonlinear integral operators. Journal of the American Mathematical Society, Tome 24 (2011) no. 3, pp. 849-869. doi: 10.1090/S0894-0347-2011-00698-X
[1] , , , Non-local Dirichlet forms and symmetric jump processes Trans. Amer. Math. Soc. 2009 1963 1999
[2] , Hölder continuity of harmonic functions with respect to operators of variable order Comm. Partial Differential Equations 2005 1249 1259
[3] , Harnack inequalities for non-local operators of variable order Trans. Amer. Math. Soc. 2005 837 850
[4] , Harnack inequalities for jump processes Potential Anal. 2002 375 388
[5] , Solutions faibles dâéquations dâévolution dans les espaces de Hilbert Ann. Inst. Fourier (Grenoble) 1972 311 329
[6] , An extension problem related to the fractional Laplacian Comm. Partial Differential Equations 2007 1245 1260
[7] , Regularity theory for fully nonlinear integro-differential equations Comm. Pure Appl. Math. 2009 597 638
[8] , Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation Ann. of Math. (2) 2010 1903 1930
[9] , , Eventual regularization of the slightly supercritical fractional Burgers equation Discrete Contin. Dyn. Syst. 2010 847 861
[10] Symmetric jump processes and their heat kernel estimates Sci. China Ser. A 2009 1423 1445
[11] , Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations Ann. Inst. H. Poincaré C Anal. Non Linéaire 2009 159 180
[12] Sulla differenziabilità e lâanaliticità delle estremali degli integrali multipli regolari Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 1957 25 43
[13] , , Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems 1999 107 152
[14] , Nonlocal operators with applications to image processing Multiscale Model. Simul. 2008 1005 1028
[15] A priori estimates for integro-differential operators with measurable kernels Calc. Var. Partial Differential Equations 2009 1 21
[16] , , Global well-posedness for the critical 2D dissipative quasi-geostrophic equation Invent. Math. 2007 445 453
[17] Uniform estimates for fundamental solutions associated with non-local Dirichlet forms Osaka J. Math. 1995 833 860
[18] Recent developments in the Navier-Stokes problem 2002
[19] , Multipliers of the Hölder classes J. Functional Analysis 1976 369 379
[20] Continuity of solutions of parabolic and elliptic equations Amer. J. Math. 1958 931 954
[21] Hölder estimates for solutions of integro-differential equations like the fractional Laplace Indiana Univ. Math. J. 2006 1155 1174
[22] Eventual regularization for the slightly supercritical quasi-geostrophic equation Ann. Inst. H. Poincaré C Anal. Non Linéaire 2010 693 704
[23] A new proof of partial regularity of solutions to Navier-Stokes equations NoDEA Nonlinear Differential Equations Appl. 2007 753 785
Cité par Sources :