Regularity theory for parabolic nonlinear integral operators
Journal of the American Mathematical Society, Tome 24 (2011) no. 3, pp. 849-869

Voir la notice de l'article provenant de la source American Mathematical Society

This article is dedicated to the regularity theory for solutions to a class of nonlinear integral variational problems. Those problems are involved in nonlocal image and signal processing.
DOI : 10.1090/S0894-0347-2011-00698-X

Caffarelli, Luis 1 ; Chan, Chi Hin 2 ; Vasseur, Alexis 3

1 Department of Mathematics, University of Texas at Austin, 1 University Station, C1200, Austin, Texas 78712
2 Institute for Mathematics and Its Applications, University of Minnesota, 207 Church Street SE, Minneapolis, MN 55455-0134
3 Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB England
@article{10_1090_S0894_0347_2011_00698_X,
     author = {Caffarelli, Luis and Chan, Chi Hin and Vasseur, Alexis},
     title = {Regularity theory for parabolic nonlinear integral operators},
     journal = {Journal of the American Mathematical Society},
     pages = {849--869},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2011},
     doi = {10.1090/S0894-0347-2011-00698-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00698-X/}
}
TY  - JOUR
AU  - Caffarelli, Luis
AU  - Chan, Chi Hin
AU  - Vasseur, Alexis
TI  - Regularity theory for parabolic nonlinear integral operators
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 849
EP  - 869
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00698-X/
DO  - 10.1090/S0894-0347-2011-00698-X
ID  - 10_1090_S0894_0347_2011_00698_X
ER  - 
%0 Journal Article
%A Caffarelli, Luis
%A Chan, Chi Hin
%A Vasseur, Alexis
%T Regularity theory for parabolic nonlinear integral operators
%J Journal of the American Mathematical Society
%D 2011
%P 849-869
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00698-X/
%R 10.1090/S0894-0347-2011-00698-X
%F 10_1090_S0894_0347_2011_00698_X
Caffarelli, Luis; Chan, Chi Hin; Vasseur, Alexis. Regularity theory for parabolic nonlinear integral operators. Journal of the American Mathematical Society, Tome 24 (2011) no. 3, pp. 849-869. doi: 10.1090/S0894-0347-2011-00698-X

[1] Barlow, Martin T., Bass, Richard F., Chen, Zhen-Qing, Kassmann, Moritz Non-local Dirichlet forms and symmetric jump processes Trans. Amer. Math. Soc. 2009 1963 1999

[2] Bass, Richard F., Kassmann, Moritz Hölder continuity of harmonic functions with respect to operators of variable order Comm. Partial Differential Equations 2005 1249 1259

[3] Bass, Richard F., Kassmann, Moritz Harnack inequalities for non-local operators of variable order Trans. Amer. Math. Soc. 2005 837 850

[4] Bass, Richard F., Levin, David A. Harnack inequalities for jump processes Potential Anal. 2002 375 388

[5] Benilan, P., Brezis, H. Solutions faibles d’équations d’évolution dans les espaces de Hilbert Ann. Inst. Fourier (Grenoble) 1972 311 329

[6] Caffarelli, Luis, Silvestre, Luis An extension problem related to the fractional Laplacian Comm. Partial Differential Equations 2007 1245 1260

[7] Caffarelli, Luis, Silvestre, Luis Regularity theory for fully nonlinear integro-differential equations Comm. Pure Appl. Math. 2009 597 638

[8] Caffarelli, Luis A., Vasseur, Alexis Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation Ann. of Math. (2) 2010 1903 1930

[9] Chan, Chi Hin, Czubak, Magdalena, Silvestre, Luis Eventual regularization of the slightly supercritical fractional Burgers equation Discrete Contin. Dyn. Syst. 2010 847 861

[10] Chen, Zhen-Qing Symmetric jump processes and their heat kernel estimates Sci. China Ser. A 2009 1423 1445

[11] Constantin, Peter, Wu, Jiahong Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations Ann. Inst. H. Poincaré C Anal. Non Linéaire 2009 159 180

[12] De Giorgi, Ennio Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 1957 25 43

[13] Giacomin, Giambattista, Lebowitz, Joel L., Presutti, Errico Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems 1999 107 152

[14] Gilboa, Guy, Osher, Stanley Nonlocal operators with applications to image processing Multiscale Model. Simul. 2008 1005 1028

[15] Kassmann, Moritz A priori estimates for integro-differential operators with measurable kernels Calc. Var. Partial Differential Equations 2009 1 21

[16] Kiselev, A., Nazarov, F., Volberg, A. Global well-posedness for the critical 2D dissipative quasi-geostrophic equation Invent. Math. 2007 445 453

[17] Komatsu, Takashi Uniform estimates for fundamental solutions associated with non-local Dirichlet forms Osaka J. Math. 1995 833 860

[18] Lemariã©-Rieusset, P. G. Recent developments in the Navier-Stokes problem 2002

[19] Madych, W. R., Riviã¨Re, N. M. Multipliers of the Hölder classes J. Functional Analysis 1976 369 379

[20] Nash, J. Continuity of solutions of parabolic and elliptic equations Amer. J. Math. 1958 931 954

[21] Silvestre, Luis Hölder estimates for solutions of integro-differential equations like the fractional Laplace Indiana Univ. Math. J. 2006 1155 1174

[22] Silvestre, Luis Eventual regularization for the slightly supercritical quasi-geostrophic equation Ann. Inst. H. Poincaré C Anal. Non Linéaire 2010 693 704

[23] Vasseur, Alexis F. A new proof of partial regularity of solutions to Navier-Stokes equations NoDEA Nonlinear Differential Equations Appl. 2007 753 785

Cité par Sources :