Global classical solutions of the Boltzmann equation without angular cut-off
Journal of the American Mathematical Society, Tome 24 (2011) no. 3, pp. 771-847

Voir la notice de l'article provenant de la source American Mathematical Society

This work proves the global stability of the Boltzmann equation (1872) with the physical collision kernels derived by Maxwell in 1866 for the full range of inverse-power intermolecular potentials, $r^{-(p-1)}$ with $p>2$, for initial perturbations of the Maxwellian equilibrium states, as announced in an earlier paper by the authors. We more generally cover collision kernels with parameters $s\in (0,1)$ and $\gamma$ satisfying $\gamma > -n$ in arbitrary dimensions $\mathbb {T}^n \times \mathbb {R}^n$ with $n\ge 2$. Moreover, we prove rapid convergence as predicted by the celebrated Boltzmann $H$-theorem. When $\gamma \ge -2s$, we have exponential time decay to the Maxwellian equilibrium states. When $\gamma -2s$, our solutions decay polynomially fast in time with any rate. These results are completely constructive. Additionally, we prove sharp constructive upper and lower bounds for the linearized collision operator in terms of a geometric fractional Sobolev norm; we thus observe that a spectral gap exists only when $\gamma \ge -2s$, as conjectured by Mouhot and Strain. It will be observed that this fundamental equation, derived by both Boltzmann and Maxwell, grants a basic example where a range of geometric fractional derivatives occur in a physical model of the natural world. Our methods provide a new understanding of the grazing collisions in the Boltzmann theory.
DOI : 10.1090/S0894-0347-2011-00697-8

Gressman, Philip 1 ; Strain, Robert 1

1 Department of Mathematics, University of Pennsylvania, David Rittenhouse Laboratory, 209 South 33rd Street, Philadelphia, Pennsylvania 19104-6395
@article{10_1090_S0894_0347_2011_00697_8,
     author = {Gressman, Philip and Strain, Robert},
     title = {Global classical solutions of the {Boltzmann} equation without angular cut-off},
     journal = {Journal of the American Mathematical Society},
     pages = {771--847},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2011},
     doi = {10.1090/S0894-0347-2011-00697-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00697-8/}
}
TY  - JOUR
AU  - Gressman, Philip
AU  - Strain, Robert
TI  - Global classical solutions of the Boltzmann equation without angular cut-off
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 771
EP  - 847
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00697-8/
DO  - 10.1090/S0894-0347-2011-00697-8
ID  - 10_1090_S0894_0347_2011_00697_8
ER  - 
%0 Journal Article
%A Gressman, Philip
%A Strain, Robert
%T Global classical solutions of the Boltzmann equation without angular cut-off
%J Journal of the American Mathematical Society
%D 2011
%P 771-847
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00697-8/
%R 10.1090/S0894-0347-2011-00697-8
%F 10_1090_S0894_0347_2011_00697_8
Gressman, Philip; Strain, Robert. Global classical solutions of the Boltzmann equation without angular cut-off. Journal of the American Mathematical Society, Tome 24 (2011) no. 3, pp. 771-847. doi: 10.1090/S0894-0347-2011-00697-8

[1] Alexandre, Radjesvarane Une définition des solutions renormalisées pour l’équation de Boltzmann sans troncature angulaire C. R. Acad. Sci. Paris Sér. I Math. 1999 987 991

[2] Alexandre, Radjesvarane Around 3D Boltzmann non linear operator without angular cutoff, a new formulation M2AN Math. Model. Numer. Anal. 2000 575 590

[3] Alexandre, Radjesvarane Some solutions of the Boltzmann equation without angular cutoff J. Statist. Phys. 2001 327 358

[4] Alexandre, Radjesvarane, El Safadi, Mouhamad Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. I. Non-cutoff case and Maxwellian molecules Math. Models Methods Appl. Sci. 2005 907 920

[5] Alexandre, Radjesvarane Integral estimates for a linear singular operator linked with the Boltzmann operator. I. Small singularities 0<𝜈<1 Indiana Univ. Math. J. 2006 1975 2021

[6] Alexandre, Radjesvarane A review of Boltzmann equation with singular kernels Kinet. Relat. Models 2009 551 646

[7] Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B. Entropy dissipation and long-range interactions Arch. Ration. Mech. Anal. 2000 327 355

[8] Alexandre, R., Villani, C. On the Boltzmann equation for long-range interactions Comm. Pure Appl. Math. 2002 30 70

[9] Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T. Uncertainty principle and kinetic equations J. Funct. Anal. 2008 2013 2066

[10] Alexandre, Radjesvarane, Morimoto, Yoshinori, Ukai, Seiji, Xu, Chao-Jiang, Yang, Tong Regularizing effect and local existence for the non-cutoff Boltzmann equation Arch. Ration. Mech. Anal. 2010 39 123

[11] Alexandre, Radjesvarane, Morimoto, Y., Ukai, Seiji, Xu, Chao-Jiang, Yang, Tong Global existence and full regularity of the Boltzmann equation without angular cutoff preprint Dec. 27, 2009

[12] Alexandre, Radjesvarane, Morimoto, Y., Ukai, Seiji, Xu, Chao-Jiang, Yang, Tong The Boltzmann equation without angular cutoff in the whole space: I. An essential coercivity estimate preprint May 28, 2010

[13] Alexandre, Radjesvarane, Morimoto, Y., Ukai, Seiji, Xu, Chao-Jiang, Yang, Tong Boltzmann equation without angular cutoff in the whole space: II. Global existence for soft potential preprint July 2, 2010

[14] Alonso, Ricardo J., Gamba, Irene M. Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section J. Stat. Phys. 2009 1147 1165

[15] Alonso, Ricardo J., Carneiro, Emanuel, Gamba, Irene M. Convolution inequalities for the Boltzmann collision operator Comm. Math. Phys. 2010 293 322

[16] Arkeryd, Leif Intermolecular forces of infinite range and the Boltzmann equation Arch. Rational Mech. Anal. 1981 11 21

[17] Arkeryd, Leif Asymptotic behaviour of the Boltzmann equation with infinite range forces Comm. Math. Phys. 1982 475 484

[18] Bernis, Laurent, Desvillettes, Laurent Propagation of singularities for classical solutions of the Vlasov-Poisson-Boltzmann equation Discrete Contin. Dyn. Syst. 2009 13 33

[19] Bobylã«V, A. V. The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules 1988 111 233

[20] Boltzmann, Ludwig Lectures on gas theory 1964

[21] Boudin, Laurent, Desvillettes, Laurent On the singularities of the global small solutions of the full Boltzmann equation Monatsh. Math. 2000 91 108

[22] Carleman, Torsten Sur la théorie de l’équation intégrodifférentielle de Boltzmann Acta Math. 1933 91 146

[23] Cercignani, Carlo The Boltzmann equation and its applications 1988

[24] Cercignani, Carlo, Illner, Reinhard, Pulvirenti, Mario The mathematical theory of dilute gases 1994

[25] Chen, Yemin, Desvillettes, Laurent, He, Lingbing Smoothing effects for classical solutions of the full Landau equation Arch. Ration. Mech. Anal. 2009 21 55

[26] Chen, Yemin, He, Lingbing Smoothing effect for Boltzmann equation with full-range interactions arXiv preprint July 22, 2010

[27] Desvillettes, Laurent About the regularizing properties of the non-cut-off Kac equation Comm. Math. Phys. 1995 417 440

[28] Desvillettes, Laurent Regularization for the non-cutoff 2D radially symmetric Boltzmann equation with a velocity dependent cross section Transport Theory Statist. Phys. 1996 383 394

[29] Desvillettes, Laurent Regularization properties of the 2-dimensional non-radially symmetric non-cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules Transport Theory Statist. Phys. 1997 341 357

[30] Desvillettes, Laurent About the use of the Fourier transform for the Boltzmann equation Riv. Mat. Univ. Parma (7) 2003 1 99

[31] Desvillettes, L., Golse, F. On a model Boltzmann equation without angular cutoff Differential Integral Equations 2000 567 594

[32] Desvillettes, Laurent, Mouhot, Clã©Ment Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions Arch. Ration. Mech. Anal. 2009 227 253

[33] Desvillettes, Laurent, Wennberg, Bernt Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff Comm. Partial Differential Equations 2004 133 155

[34] Desvillettes, Laurent, Villani, Cã©Dric On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness Comm. Partial Differential Equations 2000 179 259

[35] Desvillettes, L., Villani, C. On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation Invent. Math. 2005 245 316

[36] Diperna, R. J., Lions, P.-L. On the Cauchy problem for Boltzmann equations: global existence and weak stability Ann. of Math. (2) 1989 321 366

[37] Duan, Renjun On the Cauchy problem for the Boltzmann equation in the whole space: global existence and uniform stability in 𝐿²_{𝜉}(𝐻^{𝑁}ₓ) J. Differential Equations 2008 3204 3234

[38] Duan, Renjun, Li, Meng-Rong, Yang, Tong Propagation of singularities in the solutions to the Boltzmann equation near equilibrium Math. Models Methods Appl. Sci. 2008 1093 1114

[39] Duan, Renjun, Strain, Robert M. Optimal Time Decay of the Vlasov-Poisson-Boltzmann System in ℝ³ Arch. Rational Mech. Anal. 2011 291 328

[40] Duan, Renjun, Strain, Robert M. Optimal Large-Time Behavior of the Vlasov-Maxwell-Boltzmann System in the Whole Space preprint 2010

[41] Fournier, Nicolas, Guã©Rin, Hã©Lã¨Ne On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity J. Stat. Phys. 2008 749 781

[42] Fefferman, Charles L. The uncertainty principle Bull. Amer. Math. Soc. (N.S.) 1983 129 206

[43] Gamba, I. M., Panferov, V., Villani, C. Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation Arch. Ration. Mech. Anal. 2009 253 282

[44] Glassey, Robert T. The Cauchy problem in kinetic theory 1996

[45] Goudon, T. On Boltzmann equations and Fokker-Planck asymptotics: influence of grazing collisions J. Statist. Phys. 1997 751 776

[46] Grad, Harold Asymptotic theory of the Boltzmann equation. II 1963 26 59

[47] Gressman, Philip T., Strain, Robert M. Global Strong Solutions of the Boltzmann Equation without Angular Cut-off Dec. 4, 2009 55

[48] Gressman, Philip T., Strain, Robert M. Global classical solutions of the Boltzmann equation with long-range interactions Proc. Natl. Acad. Sci. USA 2010 5744 5749

[49] Gressman, Philip T., Strain, Robert M. Global Classical Solutions of the Boltzmann Equation with Long-Range Interactions and Soft-Potentials Feb. 15, 2010 51

[50] Gressman, Philip T., Strain, Robert M. Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production submitted July 8, 2010

[51] Guo, Yan The Landau equation in a periodic box Comm. Math. Phys. 2002 391 434

[52] Guo, Yan Classical solutions to the Boltzmann equation for molecules with an angular cutoff Arch. Ration. Mech. Anal. 2003 305 353

[53] Guo, Yan The Vlasov-Maxwell-Boltzmann system near Maxwellians Invent. Math. 2003 593 630

[54] Guo, Yan The Boltzmann equation in the whole space Indiana Univ. Math. J. 2004 1081 1094

[55] Illner, Reinhard, Shinbrot, Marvin The Boltzmann equation: global existence for a rare gas in an infinite vacuum Comm. Math. Phys. 1984 217 226

[56] Kaniel, Shmuel, Shinbrot, Marvin The Boltzmann equation. I. Uniqueness and local existence Comm. Math. Phys. 1978 65 84

[57] Kawashima, Shuichi The Boltzmann equation and thirteen moments Japan J. Appl. Math. 1990 301 320

[58] Jang, Juhi Vlasov-Maxwell-Boltzmann diffusive limit Arch. Ration. Mech. Anal. 2009 531 584

[59] Klainerman, S., Rodnianski, I. A geometric approach to the Littlewood-Paley theory Geom. Funct. Anal. 2006 126 163

[60] Lions, P.-L. On Boltzmann and Landau equations Philos. Trans. Roy. Soc. London Ser. A 1994 191 204

[61] Lions, P.-L. Compactness in Boltzmann’s equation via Fourier integral operators and applications. I, II J. Math. Kyoto Univ. 1994

[62] Lions, Pierre-Louis Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire C. R. Acad. Sci. Paris Sér. I Math. 1998 37 41

[63] Liu, Tai-Ping, Yang, Tong, Yu, Shih-Hsien Energy method for Boltzmann equation Phys. D 2004 178 192

[64] Maxwell, J. Clerk On the Dynamical Theory of Gases Philosophical Transactions of the Royal Society of London 1867 49 88

[65] Morgenstern, Dietrich General existence and uniqueness proof for spatially homogeneous solutions of the Maxwell-Boltzmann equation in the case of Maxwellian molecules Proc. Nat. Acad. Sci. U.S.A. 1954 719 721

[66] Morimoto, Yoshinori, Ukai, Seiji, Xu, Chao-Jiang, Yang, Tong Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff Discrete Contin. Dyn. Syst. 2009 187 212

[67] Mouhot, Clã©Ment Explicit coercivity estimates for the linearized Boltzmann and Landau operators Comm. Partial Differential Equations 2006 1321 1348

[68] Mouhot, Clã©Ment, Strain, Robert M. Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff J. Math. Pures Appl. (9) 2007 515 535

[69] Muscalu, Camil, Pipher, Jill, Tao, Terence, Thiele, Christoph Multi-parameter paraproducts Rev. Mat. Iberoam. 2006 963 976

[70] Pao, Young Ping Boltzmann collision operator with inverse-power intermolecular potentials. I, II Comm. Pure Appl. Math. 1974

[71] Stein, Elias M. Singular integrals and differentiability properties of functions 1970

[72] Stein, Elias M. Topics in harmonic analysis related to the Littlewood-Paley theory 1970

[73] Strain, Robert M. The Vlasov-Maxwell-Boltzmann system in the whole space Comm. Math. Phys. 2006 543 567

[74] Strain, Robert M. Optimal time decay of the non cut-off Boltzmann equation in the whole space preprint 2010

[75] Strain, Robert M., Guo, Yan Almost exponential decay near Maxwellian Comm. Partial Differential Equations 2006 417 429

[76] Strain, Robert M., Guo, Yan Exponential decay for soft potentials near Maxwellian Arch. Ration. Mech. Anal. 2008 287 339

[77] Ukai, Seiji On the existence of global solutions of mixed problem for non-linear Boltzmann equation Proc. Japan Acad. 1974 179 184

[78] Ukai, Seiji Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff Japan J. Appl. Math. 1984 141 156

[79] Ukai, Seiji Solutions of the Boltzmann equation 1986 37 96

[80] Villani, Cã©Dric On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations Arch. Rational Mech. Anal. 1998 273 307

[81] Villani, Cã©Dric Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off Rev. Mat. Iberoamericana 1999 335 352

[82] Villani, Cã©Dric A review of mathematical topics in collisional kinetic theory 2002 71 305

[83] Villani, Cã©Dric Hypocoercivity Mem. Amer. Math. Soc. 2009

[84] Wang Chang, C. S., Uhlenbeck, G. E., De Boer, J. On the Propagation of Sound in Monatomic Gases 1952 1 56

Cité par Sources :