Voir la notice de l'article provenant de la source American Mathematical Society
Gressman, Philip 1 ; Strain, Robert 1
@article{10_1090_S0894_0347_2011_00697_8,
author = {Gressman, Philip and Strain, Robert},
title = {Global classical solutions of the {Boltzmann} equation without angular cut-off},
journal = {Journal of the American Mathematical Society},
pages = {771--847},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2011},
doi = {10.1090/S0894-0347-2011-00697-8},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00697-8/}
}
TY - JOUR AU - Gressman, Philip AU - Strain, Robert TI - Global classical solutions of the Boltzmann equation without angular cut-off JO - Journal of the American Mathematical Society PY - 2011 SP - 771 EP - 847 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00697-8/ DO - 10.1090/S0894-0347-2011-00697-8 ID - 10_1090_S0894_0347_2011_00697_8 ER -
%0 Journal Article %A Gressman, Philip %A Strain, Robert %T Global classical solutions of the Boltzmann equation without angular cut-off %J Journal of the American Mathematical Society %D 2011 %P 771-847 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00697-8/ %R 10.1090/S0894-0347-2011-00697-8 %F 10_1090_S0894_0347_2011_00697_8
Gressman, Philip; Strain, Robert. Global classical solutions of the Boltzmann equation without angular cut-off. Journal of the American Mathematical Society, Tome 24 (2011) no. 3, pp. 771-847. doi: 10.1090/S0894-0347-2011-00697-8
[1] Une définition des solutions renormalisées pour lâéquation de Boltzmann sans troncature angulaire C. R. Acad. Sci. Paris Sér. I Math. 1999 987 991
[2] Around 3D Boltzmann non linear operator without angular cutoff, a new formulation M2AN Math. Model. Numer. Anal. 2000 575 590
[3] Some solutions of the Boltzmann equation without angular cutoff J. Statist. Phys. 2001 327 358
[4] , Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. I. Non-cutoff case and Maxwellian molecules Math. Models Methods Appl. Sci. 2005 907 920
[5] Integral estimates for a linear singular operator linked with the Boltzmann operator. I. Small singularities 0<ð<1 Indiana Univ. Math. J. 2006 1975 2021
[6] A review of Boltzmann equation with singular kernels Kinet. Relat. Models 2009 551 646
[7] , , , Entropy dissipation and long-range interactions Arch. Ration. Mech. Anal. 2000 327 355
[8] , On the Boltzmann equation for long-range interactions Comm. Pure Appl. Math. 2002 30 70
[9] , , , , Uncertainty principle and kinetic equations J. Funct. Anal. 2008 2013 2066
[10] , , , , Regularizing effect and local existence for the non-cutoff Boltzmann equation Arch. Ration. Mech. Anal. 2010 39 123
[11] , , , , Global existence and full regularity of the Boltzmann equation without angular cutoff preprint Dec. 27, 2009
[12] , , , , The Boltzmann equation without angular cutoff in the whole space: I. An essential coercivity estimate preprint May 28, 2010
[13] , , , , Boltzmann equation without angular cutoff in the whole space: II. Global existence for soft potential preprint July 2, 2010
[14] , Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section J. Stat. Phys. 2009 1147 1165
[15] , , Convolution inequalities for the Boltzmann collision operator Comm. Math. Phys. 2010 293 322
[16] Intermolecular forces of infinite range and the Boltzmann equation Arch. Rational Mech. Anal. 1981 11 21
[17] Asymptotic behaviour of the Boltzmann equation with infinite range forces Comm. Math. Phys. 1982 475 484
[18] , Propagation of singularities for classical solutions of the Vlasov-Poisson-Boltzmann equation Discrete Contin. Dyn. Syst. 2009 13 33
[19] The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules 1988 111 233
[20] Lectures on gas theory 1964
[21] , On the singularities of the global small solutions of the full Boltzmann equation Monatsh. Math. 2000 91 108
[22] Sur la théorie de lâéquation intégrodifférentielle de Boltzmann Acta Math. 1933 91 146
[23] The Boltzmann equation and its applications 1988
[24] , , The mathematical theory of dilute gases 1994
[25] , , Smoothing effects for classical solutions of the full Landau equation Arch. Ration. Mech. Anal. 2009 21 55
[26] , Smoothing effect for Boltzmann equation with full-range interactions arXiv preprint July 22, 2010
[27] About the regularizing properties of the non-cut-off Kac equation Comm. Math. Phys. 1995 417 440
[28] Regularization for the non-cutoff 2D radially symmetric Boltzmann equation with a velocity dependent cross section Transport Theory Statist. Phys. 1996 383 394
[29] Regularization properties of the 2-dimensional non-radially symmetric non-cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules Transport Theory Statist. Phys. 1997 341 357
[30] About the use of the Fourier transform for the Boltzmann equation Riv. Mat. Univ. Parma (7) 2003 1 99
[31] , On a model Boltzmann equation without angular cutoff Differential Integral Equations 2000 567 594
[32] , Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions Arch. Ration. Mech. Anal. 2009 227 253
[33] , Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff Comm. Partial Differential Equations 2004 133 155
[34] , On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness Comm. Partial Differential Equations 2000 179 259
[35] , On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation Invent. Math. 2005 245 316
[36] , On the Cauchy problem for Boltzmann equations: global existence and weak stability Ann. of Math. (2) 1989 321 366
[37] On the Cauchy problem for the Boltzmann equation in the whole space: global existence and uniform stability in ð¿Â²_{ð}(ð»^{ð}â) J. Differential Equations 2008 3204 3234
[38] , , Propagation of singularities in the solutions to the Boltzmann equation near equilibrium Math. Models Methods Appl. Sci. 2008 1093 1114
[39] , Optimal Time Decay of the Vlasov-Poisson-Boltzmann System in â³ Arch. Rational Mech. Anal. 2011 291 328
[40] , Optimal Large-Time Behavior of the Vlasov-Maxwell-Boltzmann System in the Whole Space preprint 2010
[41] , On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity J. Stat. Phys. 2008 749 781
[42] The uncertainty principle Bull. Amer. Math. Soc. (N.S.) 1983 129 206
[43] , , Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation Arch. Ration. Mech. Anal. 2009 253 282
[44] The Cauchy problem in kinetic theory 1996
[45] On Boltzmann equations and Fokker-Planck asymptotics: influence of grazing collisions J. Statist. Phys. 1997 751 776
[46] Asymptotic theory of the Boltzmann equation. II 1963 26 59
[47] , Global Strong Solutions of the Boltzmann Equation without Angular Cut-off Dec. 4, 2009 55
[48] , Global classical solutions of the Boltzmann equation with long-range interactions Proc. Natl. Acad. Sci. USA 2010 5744 5749
[49] , Global Classical Solutions of the Boltzmann Equation with Long-Range Interactions and Soft-Potentials Feb. 15, 2010 51
[50] , Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production submitted July 8, 2010
[51] The Landau equation in a periodic box Comm. Math. Phys. 2002 391 434
[52] Classical solutions to the Boltzmann equation for molecules with an angular cutoff Arch. Ration. Mech. Anal. 2003 305 353
[53] The Vlasov-Maxwell-Boltzmann system near Maxwellians Invent. Math. 2003 593 630
[54] The Boltzmann equation in the whole space Indiana Univ. Math. J. 2004 1081 1094
[55] , The Boltzmann equation: global existence for a rare gas in an infinite vacuum Comm. Math. Phys. 1984 217 226
[56] , The Boltzmann equation. I. Uniqueness and local existence Comm. Math. Phys. 1978 65 84
[57] The Boltzmann equation and thirteen moments Japan J. Appl. Math. 1990 301 320
[58] Vlasov-Maxwell-Boltzmann diffusive limit Arch. Ration. Mech. Anal. 2009 531 584
[59] , A geometric approach to the Littlewood-Paley theory Geom. Funct. Anal. 2006 126 163
[60] On Boltzmann and Landau equations Philos. Trans. Roy. Soc. London Ser. A 1994 191 204
[61] Compactness in Boltzmannâs equation via Fourier integral operators and applications. I, II J. Math. Kyoto Univ. 1994
[62] Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire C. R. Acad. Sci. Paris Sér. I Math. 1998 37 41
[63] , , Energy method for Boltzmann equation Phys. D 2004 178 192
[64] On the Dynamical Theory of Gases Philosophical Transactions of the Royal Society of London 1867 49 88
[65] General existence and uniqueness proof for spatially homogeneous solutions of the Maxwell-Boltzmann equation in the case of Maxwellian molecules Proc. Nat. Acad. Sci. U.S.A. 1954 719 721
[66] , , , Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff Discrete Contin. Dyn. Syst. 2009 187 212
[67] Explicit coercivity estimates for the linearized Boltzmann and Landau operators Comm. Partial Differential Equations 2006 1321 1348
[68] , Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff J. Math. Pures Appl. (9) 2007 515 535
[69] , , , Multi-parameter paraproducts Rev. Mat. Iberoam. 2006 963 976
[70] Boltzmann collision operator with inverse-power intermolecular potentials. I, II Comm. Pure Appl. Math. 1974
[71] Singular integrals and differentiability properties of functions 1970
[72] Topics in harmonic analysis related to the Littlewood-Paley theory 1970
[73] The Vlasov-Maxwell-Boltzmann system in the whole space Comm. Math. Phys. 2006 543 567
[74] Optimal time decay of the non cut-off Boltzmann equation in the whole space preprint 2010
[75] , Almost exponential decay near Maxwellian Comm. Partial Differential Equations 2006 417 429
[76] , Exponential decay for soft potentials near Maxwellian Arch. Ration. Mech. Anal. 2008 287 339
[77] On the existence of global solutions of mixed problem for non-linear Boltzmann equation Proc. Japan Acad. 1974 179 184
[78] Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff Japan J. Appl. Math. 1984 141 156
[79] Solutions of the Boltzmann equation 1986 37 96
[80] On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations Arch. Rational Mech. Anal. 1998 273 307
[81] Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off Rev. Mat. Iberoamericana 1999 335 352
[82] A review of mathematical topics in collisional kinetic theory 2002 71 305
[83] Hypocoercivity Mem. Amer. Math. Soc. 2009
[84] , , On the Propagation of Sound in Monatomic Gases 1952 1 56
Cité par Sources :