Finite subgroups of algebraic groups
Journal of the American Mathematical Society, Tome 24 (2011) no. 4, pp. 1105-1158 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

Generalizing a classical theorem of Jordan to arbitrary characteristic, we prove that every finite subgroup of $\operatorname {GL}_n$ over a field of any characteristic $p$ possesses a subgroup of bounded index which is composed of finite simple groups of Lie type in characteristic $p$, a commutative group of order prime to $p$, and a $p$-group. While this statement can be deduced from the classification of finite simple groups, our proof is self-contained and uses methods only from algebraic geometry and the theory of linear algebraic groups. We believe that our results can serve as a viable substitute for classification in a range of applications in various areas of mathematics.
DOI : 10.1090/S0894-0347-2011-00695-4

Larsen, Michael  1   ; Pink, Richard  2

1 Department of Mathematics, Indiana University, Bloomington, Indiana 47405
2 Department of Mathematics, ETH Zürich, CH - 8092 Zürich, Switzerland
@article{10_1090_S0894_0347_2011_00695_4,
     author = {Larsen, Michael and Pink, Richard},
     title = {Finite subgroups of algebraic groups},
     journal = {Journal of the American Mathematical Society},
     pages = {1105--1158},
     year = {2011},
     volume = {24},
     number = {4},
     doi = {10.1090/S0894-0347-2011-00695-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00695-4/}
}
TY  - JOUR
AU  - Larsen, Michael
AU  - Pink, Richard
TI  - Finite subgroups of algebraic groups
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 1105
EP  - 1158
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00695-4/
DO  - 10.1090/S0894-0347-2011-00695-4
ID  - 10_1090_S0894_0347_2011_00695_4
ER  - 
%0 Journal Article
%A Larsen, Michael
%A Pink, Richard
%T Finite subgroups of algebraic groups
%J Journal of the American Mathematical Society
%D 2011
%P 1105-1158
%V 24
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00695-4/
%R 10.1090/S0894-0347-2011-00695-4
%F 10_1090_S0894_0347_2011_00695_4
Larsen, Michael; Pink, Richard. Finite subgroups of algebraic groups. Journal of the American Mathematical Society, Tome 24 (2011) no. 4, pp. 1105-1158. doi: 10.1090/S0894-0347-2011-00695-4

[1] Borel, Armand Linear algebraic groups 1991

[2] Brauer, Richard, Feit, Walter An analogue of Jordan’s theorem in characteristic 𝑝 Ann. of Math. (2) 1966 119 131

[3] Carter, Roger W. Simple groups of Lie type 1972

[4] Carter, Roger W. Finite groups of Lie type 1985

[5] Collins, Michael J. On Jordan’s theorem for complex linear groups J. Group Theory 2007 411 423

[6] Collins, Michael J. Modular analogues of Jordan’s theorem for finite linear groups J. Reine Angew. Math. 2008 143 171

[7] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I Inst. Hautes Études Sci. Publ. Math. 1964 259

[8] Guralnick, Robert M. Small representations are completely reducible J. Algebra 1999 531 541

[9] Hartshorne, Robin Algebraic geometry 1977

[10] Hiss, Gerhard Die adjungierten Darstellungen der Chevalley-Gruppen Arch. Math. (Basel) 1984 408 416

[11] Hogeweij, G. M. D. Almost-classical Lie algebras. I, II Nederl. Akad. Wetensch. Indag. Math. 1982

[12] Hrushovski, E., Pillay, A. Definable subgroups of algebraic groups over finite fields J. Reine Angew. Math. 1995 69 91

[13] Hrushovski, Ehud, Wagner, Frank Counting and dimensions 2008 161 176

[14] Humphreys, James E. Linear algebraic groups 1975

[15] Humphreys, James E. Conjugacy classes in semisimple algebraic groups 1995

[16] Jantzen, Jens Carsten Representations of algebraic groups 1987

[17] Katz, Nicholas M. Gauss sums, Kloosterman sums, and monodromy groups 1988

[18] Kneser, M. Semi-simple algebraic groups 1967 250 265

[19] Lehrer, G. I. Rational tori, semisimple orbits and the topology of hyperplane complements Comment. Math. Helv. 1992 226 251

[20] Mumford, David Abelian varieties 1970

[21] Mumford, David Geometric invariant theory 1965

[22] Nori, Madhav V. On subgroups of 𝐺𝐿_{𝑛}(𝐹_{𝑝}) Invent. Math. 1987 257 275

[23] Pink, Richard The Mumford-Tate conjecture for Drinfeld-modules Publ. Res. Inst. Math. Sci. 1997 393 425

[24] Pink, Richard Compact subgroups of linear algebraic groups J. Algebra 1998 438 504

[25] Serre, Jean-Pierre Propriétés galoisiennes des points d’ordre fini des courbes elliptiques Invent. Math. 1972 259 331

[26] Steinberg, Robert Endomorphisms of linear algebraic groups 1968 108

[27] Tate, John Endomorphisms of abelian varieties over finite fields Invent. Math. 1966 134 144

[28] Weisfeiler, Boris Post-classification version of Jordan’s theorem on finite linear groups Proc. Nat. Acad. Sci. U.S.A. 1984 5278 5279

Cité par Sources :