Rational points of universal curves
Journal of the American Mathematical Society, Tome 24 (2011) no. 3, pp. 709-769

Voir la notice de l'article provenant de la source American Mathematical Society

Suppose that $k$ is a field of characteristic zero and that $g+n>2$. The universal curve $C$ of type $(g,n)$ is the restriction of the universal curve to the generic point $\operatorname {Spec} k(\mathcal {M}_{g,n})$ of the moduli stack $\mathcal {M}_{g,n}$ of $n$-pointed smooth projective curves of genus $g$. In this paper we prove that if $g \ge 3$, then its set of rational points $C(k(\mathcal {M}_{g,n}))$ consists only of the $n$ tautological points. We then prove that if $g\ge 5$ and $n=0$, then Grothendieck’s Section Conjecture holds for $C$ when, for example, $k$ is a number field or a non-archimedean local field. When $n>0$, we consider a modified version of Grothendieck’s conjecture in which the geometric fundamental group of $C$ is replaced by its $\ell$-adic unipotent completion. We prove that if $k$ is a number field or a non-archimedean local field, then this modified version of the Section Conjecture holds for all $g \ge 5$ and $n \ge 1$.
DOI : 10.1090/S0894-0347-2011-00693-0

Hain, Richard 1

1 Department of Mathematics, Duke University, Durham, North Carolina 27708-0320
@article{10_1090_S0894_0347_2011_00693_0,
     author = {Hain, Richard},
     title = {Rational points of universal curves},
     journal = {Journal of the American Mathematical Society},
     pages = {709--769},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2011},
     doi = {10.1090/S0894-0347-2011-00693-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00693-0/}
}
TY  - JOUR
AU  - Hain, Richard
TI  - Rational points of universal curves
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 709
EP  - 769
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00693-0/
DO  - 10.1090/S0894-0347-2011-00693-0
ID  - 10_1090_S0894_0347_2011_00693_0
ER  - 
%0 Journal Article
%A Hain, Richard
%T Rational points of universal curves
%J Journal of the American Mathematical Society
%D 2011
%P 709-769
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00693-0/
%R 10.1090/S0894-0347-2011-00693-0
%F 10_1090_S0894_0347_2011_00693_0
Hain, Richard. Rational points of universal curves. Journal of the American Mathematical Society, Tome 24 (2011) no. 3, pp. 709-769. doi: 10.1090/S0894-0347-2011-00693-0

[1] Anderson, Michael P. Exactness properties of profinite completion functors Topology 1974 229 239

[2] Birman, Joan S. Braids, links, and mapping class groups 1974

[3] Bogomolov, Fedor Alekseivich Sur l’algébricité des représentations 𝑙-adiques C. R. Acad. Sci. Paris Sér. A-B 1980

[4] Deligne, P. Cohomologie étale 1977

[5] Deligne, Pierre, Griffiths, Phillip, Morgan, John, Sullivan, Dennis Real homotopy theory of Kähler manifolds Invent. Math. 1975 245 274

[6] Earle, Clifford J., Kra, Irwin On sections of some holomorphic families of closed Riemann surfaces Acta Math. 1976 49 79

[7] Fulton, William, Harris, Joe Representation theory 1991

[8] Van Geemen, Bert, Oort, Frans A compactification of a fine moduli space of curves 2000 285 298

[9] Goresky, Mark, Macpherson, Robert Stratified Morse theory 1988

[10] Grothendieck, A. Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes Inst. Hautes Études Sci. Publ. Math. 1961 222

[11] Hain, Richard M. Completions of mapping class groups and the cycle 𝐶-𝐶⁻ 1993 75 105

[12] Hain, Richard M. Torelli groups and geometry of moduli spaces of curves 1995 97 143

[13] Hain, Richard Infinitesimal presentations of the Torelli groups J. Amer. Math. Soc. 1997 597 651

[14] Hain, Richard Relative weight filtrations on completions of mapping class groups 2008 309 368

[15] Hain, Richard, Matsumoto, Makoto Weighted completion of Galois groups and Galois actions on the fundamental group of ℙ¹-{0,1,∞} Compositio Math. 2003 119 167

[16] Hain, Richard, Matsumoto, Makoto Tannakian fundamental groups associated to Galois groups 2003 183 216

[17] Hain, Richard, Matsumoto, Makoto Galois actions on fundamental groups of curves and the cycle 𝐶-𝐶⁻ J. Inst. Math. Jussieu 2005 363 403

[18] Hubbard, John Sur la non-existence de sections analytiques à la courbe universelle de Teichmüller C. R. Acad. Sci. Paris Sér. A-B 1972

[19] Johnson, Dennis The structure of the Torelli group. III. The abelianization of 𝒯 Topology 1985 127 144

[20] Kabanov, Alexandre I. Stability of Schur functors J. Algebra 1997 233 240

[21] Kim, Minhyong The motivic fundamental group of 𝐏¹\sbs{0,1,∞} and the theorem of Siegel Invent. Math. 2005 629 656

[22] Kim, Minhyong The unipotent Albanese map and Selmer varieties for curves Publ. Res. Inst. Math. Sci. 2009 89 133

[23] Kohno, Toshitake, Oda, Takayuki The lower central series of the pure braid group of an algebraic curve 1987 201 219

[24] Knudsen, Finn F. The projectivity of the moduli space of stable curves. III. The line bundles on 𝑀_{𝑔,𝑛}, and a proof of the projectivity of \overline𝑀_{𝑔,𝑛} in characteristic 0 Math. Scand. 1983 200 212

[25] Labute, John P. On the descending central series of groups with a single defining relation J. Algebra 1970 16 23

[26] Mumford, D., Fogarty, J., Kirwan, F. Geometric invariant theory 1994

[27] Nakamura, Hiroaki, Takao, Naotake, Ueno, Ryoichi Some stability properties of Teichmüller modular function fields with pro-𝑙 weight structures Math. Ann. 1995 197 213

[28] Neukirch, Jã¼Rgen, Schmidt, Alexander, Wingberg, Kay Cohomology of number fields 2008

[29] Noohi, B. Fundamental groups of algebraic stacks J. Inst. Math. Jussieu 2004 69 103

[30] Oda, Takayuki Etale homotopy type of the moduli spaces of algebraic curves 1997 85 95

[31] Schmid, Wilfried Variation of Hodge structure: the singularities of the period mapping Invent. Math. 1973 211 319

[32] Stallings, John Homology and central series of groups J. Algebra 1965 170 181

[33] Zucker, Steven Variation of mixed Hodge structure. II Invent. Math. 1985 543 565

[34] Stix, Jakob A monodromy criterion for extending curves Int. Math. Res. Not. 2005 1787 1802

[35] Sullivan, Dennis On the intersection ring of compact three manifolds Topology 1975 275 277

[36] Weil, Andr㩠L’arithmétique sur les courbes algébriques Acta Math. 1929 281 315

[37] Wickelgren, Kirsten Lower central series obstructions to homotopy sections of curves over number fields 2009 97

Cité par Sources :