Fluctuation exponent of the KPZ/stochastic Burgers equation
Journal of the American Mathematical Society, Tome 24 (2011) no. 3, pp. 683-708

Voir la notice de l'article provenant de la source American Mathematical Society

We consider the stochastic heat equation \[ \partial _tZ= \partial _x^2 Z - Z \dot W \] on the real line, where $\dot W$ is space-time white noise. $h(t,x)=-\operatorname {log} Z(t,x)$ is interpreted as a solution of the KPZ equation, and $u(t,x)=\partial _x h(t,x)$ as a solution of the stochastic Burgers equation. We take $Z(0,x)=\exp \{B(x)\}$, where $B(x)$ is a two-sided Brownian motion, corresponding to the stationary solution of the stochastic Burgers equation. We show that there exist $0 c_1\le c_2 \infty$ such that \[ c_1t^{2/3}\le \operatorname {Var}(\operatorname {log} Z(t,x) )\le c_2 t^{2/3}. \] Analogous results are obtained for some moments of the correlation functions of $u(t,x)$. In particular, it is shown there that the bulk diffusivity satisfies \[ c_1t^{1/3}\le D_\textrm {bulk}(t) \le c_2 t^{1/3}.\] The proof uses approximation by weakly asymmetric simple exclusion processes, for which we obtain the microscopic analogies of the results by coupling.
DOI : 10.1090/S0894-0347-2011-00692-9

Balázs, M. 1 ; Quastel, J. 2 ; Seppäläinen, T. 3

1 Department of Stochastics, Budapest University of Technology and Economics, 1 Egry Jozsef u, H ep V 7, Budapest, 1111 Hungary
2 Departments of Mathematics and Statistics, University of Toronto, 40 St. George Street, Room 6290, Toronto, ON M5S 1L2 Canada
3 Department of Mathematics, University of Wisconsin–Madison, 480 Lincoln Drive, Madison, Wisconsin 53706-1388
@article{10_1090_S0894_0347_2011_00692_9,
     author = {Bal\~A{\textexclamdown}zs, M. and Quastel, J. and Sepp\~A{\textcurrency}l\~A{\textcurrency}inen, T.},
     title = {Fluctuation exponent of the {KPZ/stochastic} {Burgers} equation},
     journal = {Journal of the American Mathematical Society},
     pages = {683--708},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2011},
     doi = {10.1090/S0894-0347-2011-00692-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00692-9/}
}
TY  - JOUR
AU  - Balázs, M.
AU  - Quastel, J.
AU  - Seppäläinen, T.
TI  - Fluctuation exponent of the KPZ/stochastic Burgers equation
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 683
EP  - 708
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00692-9/
DO  - 10.1090/S0894-0347-2011-00692-9
ID  - 10_1090_S0894_0347_2011_00692_9
ER  - 
%0 Journal Article
%A Balázs, M.
%A Quastel, J.
%A Seppäläinen, T.
%T Fluctuation exponent of the KPZ/stochastic Burgers equation
%J Journal of the American Mathematical Society
%D 2011
%P 683-708
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00692-9/
%R 10.1090/S0894-0347-2011-00692-9
%F 10_1090_S0894_0347_2011_00692_9
Balázs, M.; Quastel, J.; Seppäläinen, T. Fluctuation exponent of the KPZ/stochastic Burgers equation. Journal of the American Mathematical Society, Tome 24 (2011) no. 3, pp. 683-708. doi: 10.1090/S0894-0347-2011-00692-9

[1] Baik, Jinho, Deift, Percy, Johansson, Kurt On the distribution of the length of the longest increasing subsequence of random permutations J. Amer. Math. Soc. 1999 1119 1178

[2] Balã¡Zs, Mã¡Rton, Seppã¤Lã¤Inen, Timo Exact connections between current fluctuations and the second class particle in a class of deposition models J. Stat. Phys. 2007 431 455

[3] Balã¡Zs, Mã¡Rton, Seppã¤Lã¤Inen, Timo Fluctuation bounds for the asymmetric simple exclusion process ALEA Lat. Am. J. Probab. Math. Stat. 2009 1 24

[4] Barabã¡Si, Albert-Lã¡Szlã³, Stanley, H. Eugene Fractal concepts in surface growth 1995

[5] Bertini, Lorenzo, Giacomin, Giambattista Stochastic Burgers and KPZ equations from particle systems Comm. Math. Phys. 1997 571 607

[6] Bezerra, Sã©Rgio, Tindel, Samy, Viens, Frederi Superdiffusivity for a Brownian polymer in a continuous Gaussian environment Ann. Probab. 2008 1642 1675

[7] Billingsley, Patrick Convergence of probability measures 1968

[8] Chan, Terence Scaling limits of Wick ordered KPZ equation Comm. Math. Phys. 2000 671 690

[9] Ferrari, Patrik L., Spohn, Herbert Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process Comm. Math. Phys. 2006 1 44

[10] Forster, D., Nelson, David R., Stephen, Michael J. Large-distance and long-time properties of a randomly stirred fluid Phys. Rev. A (3) 1977 732 749

[11] Holden, Helge, ØKsendal, Bernt, Ubã¸E, Jan, Zhang, Tusheng Stochastic partial differential equations 1996

[12] Johansson, Kurt Transversal fluctuations for increasing subsequences on the plane Probab. Theory Related Fields 2000 445 456

[13] Licea, C., Newman, C. M., Piza, M. S. T. Superdiffusivity in first-passage percolation Probab. Theory Related Fields 1996 559 591

[14] Mejane, Olivier Upper bound of a volume exponent for directed polymers in a random environment Ann. Inst. H. Poincaré Probab. Statist. 2004 299 308

[15] Mueller, Carl On the support of solutions to the heat equation with noise Stochastics Stochastics Rep. 1991 225 245

[16] Piza, M. S. T. Directed polymers in a random environment: some results on fluctuations J. Statist. Phys. 1997 581 603

[17] Prã¤Hofer, Michael, Spohn, Herbert Current fluctuations for the totally asymmetric simple exclusion process 2002 185 204

[18] Da Prato, Giuseppe, Zabczyk, Jerzy Stochastic equations in infinite dimensions 1992

[19] Quastel, Jeremy, Valko, Benedek 𝑡^{1/3} Superdiffusivity of finite-range asymmetric exclusion processes on ℤ Comm. Math. Phys. 2007 379 394

[20] Walsh, John B. An introduction to stochastic partial differential equations 1986 265 439

Cité par Sources :