Voir la notice de l'article provenant de la source American Mathematical Society
Balázs, M. 1 ; Quastel, J. 2 ; Seppäläinen, T. 3
@article{10_1090_S0894_0347_2011_00692_9,
author = {Bal\~A{\textexclamdown}zs, M. and Quastel, J. and Sepp\~A{\textcurrency}l\~A{\textcurrency}inen, T.},
title = {Fluctuation exponent of the {KPZ/stochastic} {Burgers} equation},
journal = {Journal of the American Mathematical Society},
pages = {683--708},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2011},
doi = {10.1090/S0894-0347-2011-00692-9},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00692-9/}
}
TY - JOUR AU - Balázs, M. AU - Quastel, J. AU - Seppäläinen, T. TI - Fluctuation exponent of the KPZ/stochastic Burgers equation JO - Journal of the American Mathematical Society PY - 2011 SP - 683 EP - 708 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00692-9/ DO - 10.1090/S0894-0347-2011-00692-9 ID - 10_1090_S0894_0347_2011_00692_9 ER -
%0 Journal Article %A Balázs, M. %A Quastel, J. %A Seppäläinen, T. %T Fluctuation exponent of the KPZ/stochastic Burgers equation %J Journal of the American Mathematical Society %D 2011 %P 683-708 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00692-9/ %R 10.1090/S0894-0347-2011-00692-9 %F 10_1090_S0894_0347_2011_00692_9
Balázs, M.; Quastel, J.; Seppäläinen, T. Fluctuation exponent of the KPZ/stochastic Burgers equation. Journal of the American Mathematical Society, Tome 24 (2011) no. 3, pp. 683-708. doi: 10.1090/S0894-0347-2011-00692-9
[1] , , On the distribution of the length of the longest increasing subsequence of random permutations J. Amer. Math. Soc. 1999 1119 1178
[2] , Exact connections between current fluctuations and the second class particle in a class of deposition models J. Stat. Phys. 2007 431 455
[3] , Fluctuation bounds for the asymmetric simple exclusion process ALEA Lat. Am. J. Probab. Math. Stat. 2009 1 24
[4] , Fractal concepts in surface growth 1995
[5] , Stochastic Burgers and KPZ equations from particle systems Comm. Math. Phys. 1997 571 607
[6] , , Superdiffusivity for a Brownian polymer in a continuous Gaussian environment Ann. Probab. 2008 1642 1675
[7] Convergence of probability measures 1968
[8] Scaling limits of Wick ordered KPZ equation Comm. Math. Phys. 2000 671 690
[9] , Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process Comm. Math. Phys. 2006 1 44
[10] , , Large-distance and long-time properties of a randomly stirred fluid Phys. Rev. A (3) 1977 732 749
[11] , , , Stochastic partial differential equations 1996
[12] Transversal fluctuations for increasing subsequences on the plane Probab. Theory Related Fields 2000 445 456
[13] , , Superdiffusivity in first-passage percolation Probab. Theory Related Fields 1996 559 591
[14] Upper bound of a volume exponent for directed polymers in a random environment Ann. Inst. H. Poincaré Probab. Statist. 2004 299 308
[15] On the support of solutions to the heat equation with noise Stochastics Stochastics Rep. 1991 225 245
[16] Directed polymers in a random environment: some results on fluctuations J. Statist. Phys. 1997 581 603
[17] , Current fluctuations for the totally asymmetric simple exclusion process 2002 185 204
[18] , Stochastic equations in infinite dimensions 1992
[19] , ð¡^{1/3} Superdiffusivity of finite-range asymmetric exclusion processes on ⤠Comm. Math. Phys. 2007 379 394
[20] An introduction to stochastic partial differential equations 1986 265 439
Cité par Sources :