The Nitsche conjecture
Journal of the American Mathematical Society, Tome 24 (2011) no. 2, pp. 345-373

Voir la notice de l'article provenant de la source American Mathematical Society

The Nitsche conjecture is deeply rooted in the theory of doubly-connected minimal surfaces. However, it is commonly formulated in slightly greater generality as a question of existence of a harmonic homeomorphism between circular annuli \[ h \colon \mathbb A = A(r,R) \overset {\text {onto}}{\longrightarrow } A(r_\ast , R_\ast ) =\mathbb A^*. \] In the early 1960s, while attempting to describe all doubly-connected minimal graphs over a given annulus $\mathbb A^*$, J. C. C. Nitsche observed that their conformal modulus cannot be too large. Then he conjectured, in terms of isothermal coordinates, even more: A harmonic homeomorphism $h\colon \mathbb {A} \overset {\text {onto}}{\longrightarrow } \mathbb {A}^\ast$ exists if and only if \[ \frac {R_\ast }{r_\ast } \geqslant \frac {1}{2} \left (\frac {R}{r}+ \frac {r}{R}\right ). \] In the present paper we provide, among further generalizations, an affirmative answer to his conjecture.
DOI : 10.1090/S0894-0347-2010-00685-6

Iwaniec, Tadeusz 1 ; Kovalev, Leonid 2 ; Onninen, Jani 2

1 Department of Mathematics, Syracuse University, Syracuse, New York 13244 and Department of Mathematics and Statistics, University of Helsinki, Finland
2 Department of Mathematics, Syracuse University, Syracuse, New York 13244
@article{10_1090_S0894_0347_2010_00685_6,
     author = {Iwaniec, Tadeusz and Kovalev, Leonid and Onninen, Jani},
     title = {The {Nitsche} conjecture},
     journal = {Journal of the American Mathematical Society},
     pages = {345--373},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2011},
     doi = {10.1090/S0894-0347-2010-00685-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00685-6/}
}
TY  - JOUR
AU  - Iwaniec, Tadeusz
AU  - Kovalev, Leonid
AU  - Onninen, Jani
TI  - The Nitsche conjecture
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 345
EP  - 373
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00685-6/
DO  - 10.1090/S0894-0347-2010-00685-6
ID  - 10_1090_S0894_0347_2010_00685_6
ER  - 
%0 Journal Article
%A Iwaniec, Tadeusz
%A Kovalev, Leonid
%A Onninen, Jani
%T The Nitsche conjecture
%J Journal of the American Mathematical Society
%D 2011
%P 345-373
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00685-6/
%R 10.1090/S0894-0347-2010-00685-6
%F 10_1090_S0894_0347_2010_00685_6
Iwaniec, Tadeusz; Kovalev, Leonid; Onninen, Jani. The Nitsche conjecture. Journal of the American Mathematical Society, Tome 24 (2011) no. 2, pp. 345-373. doi: 10.1090/S0894-0347-2010-00685-6

[1] Astala, K., Iwaniec, T., Martin, G. Deformations of annuli with smallest mean distortion Arch. Ration. Mech. Anal. 2010 899 921

[2] Astala, Kari, Iwaniec, Tadeusz, Martin, Gaven Elliptic partial differential equations and quasiconformal mappings in the plane 2009

[3] Bailyn, Paul M. Doubly-connected minimal surfaces Trans. Amer. Math. Soc. 1967 206 220

[4] Bshouty, Daoud, Hengartner, Walter Univalent harmonic mappings in the plane Ann. Univ. Mariae Curie-Skłodowska Sect. A 1994 12 42

[5] Dierkes, Ulrich, Hildebrandt, Stefan, Kã¼Ster, Albrecht, Wohlrab, Ortwin Minimal surfaces. I 1992

[6] Dierkes, Ulrich, Hildebrandt, Stefan, Kã¼Ster, Albrecht, Wohlrab, Ortwin Minimal surfaces. II 1992

[7] Duren, Peter L. Univalent functions 1983

[8] Duren, Peter Harmonic mappings in the plane 2004

[9] Eells, J., Fuglede, B. Harmonic maps between Riemannian polyhedra 2001

[10] Hengartner, W., Schober, G. Univalent harmonic functions Trans. Amer. Math. Soc. 1987 1 31

[11] Hildebrandt, Stefan Maximum principles for minimal surfaces and for surfaces of continuous mean curvature Math. Z. 1972 253 269

[12] Hildebrandt, S., Jost, J., Widman, K.-O. Harmonic mappings and minimal submanifolds Invent. Math. 1980/81 269 298

[13] Hildebrandt, Stã©Fan, Kaul, Helmut, Widman, Kjell-Ove An existence theorem for harmonic mappings of Riemannian manifolds Acta Math. 1977 1 16

[14] Jost, Jã¼Rgen Harmonic maps between surfaces 1984

[15] Kalaj, David On the Nitsche conjecture for harmonic mappings in ℝ² and ℝ³ Israel J. Math. 2005 241 251

[16] Kaul, Helmut Remarks on the isoperimetric inequality for multiply-connected 𝐻-surfaces Math. Z. 1972 271 276

[17] Lyzzaik, Abdallah Univalent harmonic mappings and a conjecture of J. C. C. Nitsche Ann. Univ. Mariae Curie-Skłodowska Sect. A 1999 147 150

[18] Lyzzaik, Abdallah The modulus of the image annuli under univalent harmonic mappings and a conjecture of Nitsche J. London Math. Soc. (2) 2001 369 384

[19] Lyzzaik, Abdallah Univalent harmonic mappings of annuli Publ. Inst. Math. (Beograd) (N.S.) 2004 173 183

[20] Nehari, Zeev Conformal mapping 1975

[21] Nitsche, Johannes C. C. Mathematical Notes: On the Module of Doubly-Connected Regions Under Harmonic Mappings Amer. Math. Monthly 1962 781 782

[22] Nitsche, Johannes C. C. A necessary criterion for the existence of certain minimal surfaces J. Math. Mech. 1964 659 666

[23] Nitsche, Johannes C. C. The isoperimetric inequality for multiply-connected minimal surfaces Math. Ann. 1965 370 375

[24] Nitsche, Johannes C. C. Note on the nonexistence of minimal surfaces Proc. Amer. Math. Soc. 1968 1303 1305

[25] Nitsche, Johannes C. C. Vorlesungen über Minimalflächen 1975

[26] Nitsche, Johannes C. C., Leavitt, J. Numerical estimates for minimal surfaces Math. Ann. 1969 170 174

[27] Osserman, Robert A survey of minimal surfaces 1969

[28] Osserman, Robert Isoperimetric and related inequalitites 1975 207 215

[29] Osserman, R., Schiffer, M. Doubly-connected minimal surfaces Arch. Rational Mech. Anal. 1975 285 307

[30] Pommerenke, Ch. Boundary behaviour of conformal maps 1992

[31] Schober, Glenn Planar harmonic mappings 1990 171 176

[32] Weitsman, Allen Univalent harmonic mappings of annuli and a conjecture of J. C. C. Nitsche Israel J. Math. 2001 327 331

Cité par Sources :