Good formal structures for flat meromorphic connections, II: Excellent schemes
Journal of the American Mathematical Society, Tome 24 (2011) no. 1, pp. 183-229

Voir la notice de l'article provenant de la source American Mathematical Society

Given a flat meromorphic connection on an excellent scheme over a field of characteristic zero, we prove existence of good formal structures after blowing up; this extends a theorem of Mochizuki for algebraic varieties. The argument combines a numerical criterion for good formal structures from a previous paper, with an analysis based on the geometry of an associated valuation space (Riemann-Zariski space). We obtain a similar result over the formal completion of an excellent scheme along a closed subscheme. If we replace the excellent scheme by a complex analytic variety, we obtain a similar but weaker result in which the blowup can only be constructed in a suitably small neighborhood of a prescribed point.
DOI : 10.1090/S0894-0347-2010-00681-9

Kedlaya, Kiran 1

1 Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
@article{10_1090_S0894_0347_2010_00681_9,
     author = {Kedlaya, Kiran},
     title = {Good formal structures for flat meromorphic connections, {II:} {Excellent} schemes},
     journal = {Journal of the American Mathematical Society},
     pages = {183--229},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2011},
     doi = {10.1090/S0894-0347-2010-00681-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00681-9/}
}
TY  - JOUR
AU  - Kedlaya, Kiran
TI  - Good formal structures for flat meromorphic connections, II: Excellent schemes
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 183
EP  - 229
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00681-9/
DO  - 10.1090/S0894-0347-2010-00681-9
ID  - 10_1090_S0894_0347_2010_00681_9
ER  - 
%0 Journal Article
%A Kedlaya, Kiran
%T Good formal structures for flat meromorphic connections, II: Excellent schemes
%J Journal of the American Mathematical Society
%D 2011
%P 183-229
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00681-9/
%R 10.1090/S0894-0347-2010-00681-9
%F 10_1090_S0894_0347_2010_00681_9
Kedlaya, Kiran. Good formal structures for flat meromorphic connections, II: Excellent schemes. Journal of the American Mathematical Society, Tome 24 (2011) no. 1, pp. 183-229. doi: 10.1090/S0894-0347-2010-00681-9

[1] Aroca, Jose M., Hironaka, Heisuke, Vicente, Josã© L. The theory of the maximal contact 1975 135

[2] Aroca, Josã© M., Hironaka, Heisuke, Vicente, Josã© L. Desingularization theorems 1977

[3] Berkovich, Vladimir G. Spectral theory and analytic geometry over non-Archimedean fields 1990

[4] Bierstone, Edward, Milman, Pierre D. Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant Invent. Math. 1997 207 302

[5] Bosch, S., Gã¼Ntzer, U., Remmert, R. Non-Archimedean analysis 1984

[6] Boucksom, Sã©Bastien, Favre, Charles, Jonsson, Mattias Valuations and plurisubharmonic singularities Publ. Res. Inst. Math. Sci. 2008 449 494

[7] Christol, Gilles Modules différentiels et équations différentielles 𝑝-adiques 1983

[8] De Jong, A. J. Smoothness, semi-stability and alterations Inst. Hautes Études Sci. Publ. Math. 1996 51 93

[9] Deligne, Pierre Équations différentielles à points singuliers réguliers 1970

[10] Eisenbud, David Commutative algebra 1995

[11] Fulton, William, Harris, Joe Representation theory 1991

[12] Grauert, Hans Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen Inst. Hautes Études Sci. Publ. Math. 1960 64

[13] Grothendieck, A. Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes Inst. Hautes Études Sci. Publ. Math. 1961 222

[14] Grothendieck, A. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I Inst. Hautes Études Sci. Publ. Math. 1961 167

[15] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II Inst. Hautes Études Sci. Publ. Math. 1965 231

[16] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III Inst. Hautes Études Sci. Publ. Math. 1966 255

[17] Revêtements étales et groupe fondamental (SGA 1) 2003

[18] Hironaka, Heisuke Flattening theorem in complex-analytic geometry Amer. J. Math. 1975 503 547

[19] Kedlaya, Kiran S. Semistable reduction for overconvergent 𝐹-isocrystals. I. Unipotence and logarithmic extensions Compos. Math. 2007 1164 1212

[20] Kedlaya, Kiran S. Semistable reduction for overconvergent 𝐹-isocrystals. II. A valuation-theoretic approach Compos. Math. 2008 657 672

[21] Kedlaya, Kiran S. Semistable reduction for overconvergent 𝐹-isocrystals. III. Local semistable reduction at monomial valuations Compos. Math. 2009 143 172

[22] Kedlaya, Kiran S., Xiao, Liang Differential modules on 𝑝-adic polyannuli J. Inst. Math. Jussieu 2010 155 201

[23] Knaf, Hagen, Kuhlmann, Franz-Viktor Abhyankar places admit local uniformization in any characteristic Ann. Sci. École Norm. Sup. (4) 2005 833 846

[24] Majima, Hideyuki Asymptotic analysis for integrable connections with irregular singular points 1984

[25] Malgrange, Bernard Connexions méromorphes. II. Le réseau canonique Invent. Math. 1996 367 387

[26] Matsumura, Hideyuki Commutative algebra 1980

[27] Matsumura, Hideyuki Commutative ring theory 1989

[28] Mochizuki, Takuro Good formal structure for meromorphic flat connections on smooth projective surfaces 2009 223 253

[29] Raynaud, Michel, Gruson, Laurent Critères de platitude et de projectivité. Techniques de “platification” d’un module Invent. Math. 1971 1 89

[30] Rotthaus, Christel Zur Komplettierung ausgezeichneter Ringe Math. Ann. 1980 213 226

[31] Sabbah, Claude Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2 Astérisque 2000

[32] Temkin, Michael Desingularization of quasi-excellent schemes in characteristic zero Adv. Math. 2008 488 522

[33] Vaquiã©, Michel Valuations 2000 539 590

[34] Varadarajan, V. S. Linear meromorphic differential equations: a modern point of view Bull. Amer. Math. Soc. (N.S.) 1996 1 42

[35] Zariski, Oscar Local uniformization on algebraic varieties Ann. of Math. (2) 1940 852 896

[36] Zariski, Oscar, Samuel, Pierre Commutative algebra. Vol. II 1975

Cité par Sources :