The critical bias for the Hamiltonicity game is (1+𝑜(1))𝑛/ln𝑛
Journal of the American Mathematical Society, Tome 24 (2011) no. 1, pp. 125-131

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that in the biased $(1:b)$ Hamiltonicity Maker-Breaker game, played on the edges of the complete graph $K_n$, Maker has a winning strategy for $b(n)\le \left (1-\frac {30}{\ln ^{1/4}n}\right )\frac {n}{\ln n}$, for all large enough $n$.
DOI : 10.1090/S0894-0347-2010-00678-9

Krivelevich, Michael 1

1 School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
@article{10_1090_S0894_0347_2010_00678_9,
     author = {Krivelevich, Michael},
     title = {The critical bias for the {Hamiltonicity} game is (1+{\dh}‘œ(1)){\dh}‘›/ln{\dh}‘›},
     journal = {Journal of the American Mathematical Society},
     pages = {125--131},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2011},
     doi = {10.1090/S0894-0347-2010-00678-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00678-9/}
}
TY  - JOUR
AU  - Krivelevich, Michael
TI  - The critical bias for the Hamiltonicity game is (1+𝑜(1))𝑛/ln𝑛
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 125
EP  - 131
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00678-9/
DO  - 10.1090/S0894-0347-2010-00678-9
ID  - 10_1090_S0894_0347_2010_00678_9
ER  - 
%0 Journal Article
%A Krivelevich, Michael
%T The critical bias for the Hamiltonicity game is (1+𝑜(1))𝑛/ln𝑛
%J Journal of the American Mathematical Society
%D 2011
%P 125-131
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00678-9/
%R 10.1090/S0894-0347-2010-00678-9
%F 10_1090_S0894_0347_2010_00678_9
Krivelevich, Michael. The critical bias for the Hamiltonicity game is (1+𝑜(1))𝑛/ln𝑛. Journal of the American Mathematical Society, Tome 24 (2011) no. 1, pp. 125-131. doi: 10.1090/S0894-0347-2010-00678-9

[1] Beck, Jã³Zsef Random graphs and positional games on the complete graph 1985 7 13

[2] Beck, Jã³Zsef Combinatorial games 2008

[3] Bollobã¡S, Bã©La Random graphs 2001

[4] Bollobã¡S, B., Papaioannou, A. A biased Hamiltonian game Congr. Numer. 1982 105 115

[5] Chvã¡Tal, V., Erdå‘S, P. Biased positional games Ann. Discrete Math. 1978 221 229

[6] Gebauer, Heidi, Szabã³, Tibor Asymptotic random graph intuition for the biased connectivity game Random Structures Algorithms 2009 431 443

[7] Hefetz, Dan, Krivelevich, Michael, Stojakoviä‡, Miloå¡, Szabã³, Tibor Fast winning strategies in Maker-Breaker games J. Combin. Theory Ser. B 2009 39 47

[8] Hefetz, Dan, Stich, Sebastian On two problems regarding the Hamiltonian cycle game Electron. J. Combin. 2009

[9] Krivelevich, Michael, Szabã³, Tibor Biased positional games and small hypergraphs with large covers Electron. J. Combin. 2008

[10] Pã³Sa, L. Hamiltonian circuits in random graphs Discrete Math. 1976 359 364

Cité par Sources :