On the Solvability Complexity Index, the 𝑛-pseudospectrum and approximations of spectra of operators
Journal of the American Mathematical Society, Tome 24 (2011) no. 1, pp. 81-124

Voir la notice de l'article provenant de la source American Mathematical Society

We show that it is possible to compute spectra and pseudospectra of linear operators on separable Hilbert spaces given their matrix elements. The core in the theory is pseudospectral analysis and in particular the $n$-pseudospectrum and the residual pseudospectrum. We also introduce a new classification tool for spectral problems, namely, the Solvability Complexity Index. This index is an indicator of the “difficultness” of different computational spectral problems.
DOI : 10.1090/S0894-0347-2010-00676-5

Hansen, Anders 1, 2

1 Department of Applied and Computational Mathematics, California Institute of Technology, Pasadena, California 91125
2 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
@article{10_1090_S0894_0347_2010_00676_5,
     author = {Hansen, Anders},
     title = {On the {Solvability} {Complexity} {Index,} the {\dh}‘›-pseudospectrum and approximations of spectra of operators},
     journal = {Journal of the American Mathematical Society},
     pages = {81--124},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2011},
     doi = {10.1090/S0894-0347-2010-00676-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00676-5/}
}
TY  - JOUR
AU  - Hansen, Anders
TI  - On the Solvability Complexity Index, the 𝑛-pseudospectrum and approximations of spectra of operators
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 81
EP  - 124
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00676-5/
DO  - 10.1090/S0894-0347-2010-00676-5
ID  - 10_1090_S0894_0347_2010_00676_5
ER  - 
%0 Journal Article
%A Hansen, Anders
%T On the Solvability Complexity Index, the 𝑛-pseudospectrum and approximations of spectra of operators
%J Journal of the American Mathematical Society
%D 2011
%P 81-124
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00676-5/
%R 10.1090/S0894-0347-2010-00676-5
%F 10_1090_S0894_0347_2010_00676_5
Hansen, Anders. On the Solvability Complexity Index, the 𝑛-pseudospectrum and approximations of spectra of operators. Journal of the American Mathematical Society, Tome 24 (2011) no. 1, pp. 81-124. doi: 10.1090/S0894-0347-2010-00676-5

[1] Arveson, William Discretized CCR algebras J. Operator Theory 1991 225 239

[2] Arveson, William Improper filtrations for 𝐶*-algebras: spectra of unilateral tridiagonal operators Acta Sci. Math. (Szeged) 1993 11 24

[3] Arveson, William 𝐶*-algebras and numerical linear algebra J. Funct. Anal. 1994 333 360

[4] Arveson, William The role of 𝐶*-algebras in infinite-dimensional numerical linear algebra 1994 114 129

[5] Bã©Dos, Erik On filtrations for 𝐶*-algebras Houston J. Math. 1994 63 74

[6] Bã©Dos, Erik On Følner nets, Szegő’s theorem and other eigenvalue distribution theorems Exposition. Math. 1997 193 228

[7] Bender, Carl M. Properties of non-Hermitian quantum field theories Ann. Inst. Fourier (Grenoble) 2003 997 1008

[8] Bender, Carl M. Making sense of non-Hermitian Hamiltonians Rep. Progr. Phys. 2007 947 1018

[9] Bã¶Ttcher, Albrecht Pseudospectra and singular values of large convolution operators J. Integral Equations Appl. 1994 267 301

[10] Bã¶Ttcher, Albrecht 𝐶*-algebras in numerical analysis Irish Math. Soc. Bull. 2000 57 133

[11] Bã¶Ttcher, A., Chithra, A. V., Namboodiri, M. N. N. Approximation of approximation numbers by truncation Integral Equations Operator Theory 2001 387 395

[12] Bã¶Ttcher, Albrecht, Grudsky, Sergei M. Spectral properties of banded Toeplitz matrices 2005

[13] Bã¶Ttcher, Albrecht, Silbermann, Bernd Analysis of Toeplitz operators 2006

[14] Boulton, Lyonell Projection methods for discrete Schrödinger operators Proc. London Math. Soc. (3) 2004 526 544

[15] Boulton, Lyonell Limiting set of second order spectra Math. Comp. 2006 1367 1382

[16] Brown, B. M., Marletta, M. Spectral inclusion and spectral exactness for singular non-self-adjoint Hamiltonian systems R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 2003 1987 2009

[17] Brown, L. G. Lidskiĭ’s theorem in the type 𝐼𝐼 case 1986 1 35

[18] Brown, Nathanial P. AF embeddings and the numerical computation of spectra in irrational rotation algebras Numer. Funct. Anal. Optim. 2006 517 528

[19] Brown, Nathanial P. Quasi-diagonality and the finite section method Math. Comp. 2007 339 360

[20] Cordes, H. O., Labrousse, J. P. The invariance of the index in the metric space of closed operators J. Math. Mech. 1963 693 719

[21] Davies, E. B. Semi-classical states for non-self-adjoint Schrödinger operators Comm. Math. Phys. 1999 35 41

[22] Davies, E. B. Spectral properties of random non-self-adjoint matrices and operators R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 2001 191 206

[23] Davies, E. B. Non-self-adjoint differential operators Bull. London Math. Soc. 2002 513 532

[24] Davies, E. B., Kuijlaars, A. B. J. Spectral asymptotics of the non-self-adjoint harmonic oscillator J. London Math. Soc. (2) 2004 420 426

[25] Davies, E. B., Plum, M. Spectral pollution IMA J. Numer. Anal. 2004 417 438

[26] Deift, P., Li, L. C., Tomei, C. Toda flows with infinitely many variables J. Funct. Anal. 1985 358 402

[27] Dencker, Nils, Sjã¶Strand, Johannes, Zworski, Maciej Pseudospectra of semiclassical (pseudo-) differential operators Comm. Pure Appl. Math. 2004 384 415

[28] Digernes, Trond, Varadarajan, V. S., Varadhan, S. R. S. Finite approximations to quantum systems Rev. Math. Phys. 1994 621 648

[29] Dunford, Nelson, Schwartz, Jacob T. Linear operators. Part I 1988

[30] Fuglede, Bent, Kadison, Richard V. Determinant theory in finite factors Ann. of Math. (2) 1952 520 530

[31] Haagerup, Uffe, Schultz, Hanne Brown measures of unbounded operators affiliated with a finite von Neumann algebra Math. Scand. 2007 209 263

[32] Hagen, Roland, Roch, Steffen, Silbermann, Bernd 𝐶*-algebras and numerical analysis 2001 376

[33] Hansen, Anders C. On the approximation of spectra of linear operators on Hilbert spaces J. Funct. Anal. 2008 2092 2126

[34] Hayman, W. K., Kennedy, P. B. Subharmonic functions. Vol. I 1976

[35] Kato, Tosio Perturbation theory for linear operators 1995

[36] Levitin, Michael, Shargorodsky, Eugene Spectral pollution and second-order relative spectra for self-adjoint operators IMA J. Numer. Anal. 2004 393 416

[37] Marletta, Marco, Shterenberg, Roman, Weikard, Rudi On the inverse resonance problem for Schrödinger operators Comm. Math. Phys. 2010 465 484

[38] Nevanlinna, O. Computing the spectrum and representing the resolvent Numer. Funct. Anal. Optim. 2009 1025 1047

[39] Shargorodsky, Eugene Geometry of higher order relative spectra and projection methods J. Operator Theory 2000 43 62

[40] Shargorodsky, E. On the level sets of the resolvent norm of a linear operator Bull. Lond. Math. Soc. 2008 493 504

[41] Shub, Michael, Smale, Steve Complexity of Bézout’s theorem. I. Geometric aspects J. Amer. Math. Soc. 1993 459 501

[42] Smale, Steve The fundamental theorem of algebra and complexity theory Bull. Amer. Math. Soc. (N.S.) 1981 1 36

[43] Smale, Steve Complexity theory and numerical analysis 1997 523 551

[44] Szegå‘, G. Beiträge zur Theorie der Toeplitzschen Formen Math. Z. 1920 167 202

[45] Trefethen, Lloyd N. Computation of pseudospectra 1999 247 295

[46] Trefethen, Lloyd N., Chapman, S. J. Wave packet pseudomodes of twisted Toeplitz matrices Comm. Pure Appl. Math. 2004 1233 1264

[47] Trefethen, Lloyd N., Embree, Mark Spectra and pseudospectra 2005

[48] Treil, Sergei An operator Corona theorem Indiana Univ. Math. J. 2004 1763 1780

[49] Zworski, Maciej Resonances in physics and geometry Notices Amer. Math. Soc. 1999 319 328

Cité par Sources :