Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus
Journal of the American Mathematical Society, Tome 24 (2011) no. 1, pp. 231-280

Voir la notice de l'article provenant de la source American Mathematical Society

Let $\nu$ be a probability measure on $\mathrm {SL}_d(\mathbb {Z})$ satisfying the moment condition $\mathbb {E}_\nu (\|g\|^\epsilon )\infty$ for some $\epsilon$. We show that if the group generated by the support of $\nu$ is large enough, in particular if this group is Zariski dense in $\mathrm {SL}_d$, for any irrational $x \in \mathbb {T}^d$ the probability measures $\nu ^{* n} * \delta _x$ tend to the uniform measure on $\mathbb {T}^d$. If in addition $x$ is Diophantine generic, we show this convergence is exponentially fast.
DOI : 10.1090/S0894-0347-2010-00674-1

Bourgain, Jean 1 ; Furman, Alex 2 ; Lindenstrauss, Elon 3 ; Mozes, Shahar 4

1 School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
2 Department of Mathematics, University of Illinois at Chicago, 51 S Morgan Street, MSCS (m/c 249), Illinois 60607
3 Department of Mathematics, Princeton University, Princeton, New Jersey 08544, and Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
4 Department of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
@article{10_1090_S0894_0347_2010_00674_1,
     author = {Bourgain, Jean and Furman, Alex and Lindenstrauss, Elon and Mozes, Shahar},
     title = {Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus},
     journal = {Journal of the American Mathematical Society},
     pages = {231--280},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2011},
     doi = {10.1090/S0894-0347-2010-00674-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00674-1/}
}
TY  - JOUR
AU  - Bourgain, Jean
AU  - Furman, Alex
AU  - Lindenstrauss, Elon
AU  - Mozes, Shahar
TI  - Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 231
EP  - 280
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00674-1/
DO  - 10.1090/S0894-0347-2010-00674-1
ID  - 10_1090_S0894_0347_2010_00674_1
ER  - 
%0 Journal Article
%A Bourgain, Jean
%A Furman, Alex
%A Lindenstrauss, Elon
%A Mozes, Shahar
%T Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus
%J Journal of the American Mathematical Society
%D 2011
%P 231-280
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00674-1/
%R 10.1090/S0894-0347-2010-00674-1
%F 10_1090_S0894_0347_2010_00674_1
Bourgain, Jean; Furman, Alex; Lindenstrauss, Elon; Mozes, Shahar. Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus. Journal of the American Mathematical Society, Tome 24 (2011) no. 1, pp. 231-280. doi: 10.1090/S0894-0347-2010-00674-1

[1] Berend, Daniel Multi-invariant sets on compact abelian groups Trans. Amer. Math. Soc. 1984 505 535

[2] Benoist, Yves, Quint, Jean-Franã§Ois Mesures stationnaires et fermés invariants des espaces homogènes C. R. Math. Acad. Sci. Paris 2009 9 13

[3] Bougerol, Philippe, Lacroix, Jean Products of random matrices with applications to Schrödinger operators 1985

[4] Bourgain, J. On the Erdős-Volkmann and Katz-Tao ring conjectures Geom. Funct. Anal. 2003 334 365

[5] Bourgain, J. The discretized sum product and projection theorems 2009

[6] Bourgain, Jean, Furman, Alex, Lindenstrauss, Elon, Mozes, Shahar Invariant measures and stiffness for non-abelian groups of toral automorphisms C. R. Math. Acad. Sci. Paris 2007 737 742

[7] Bourgain, Jean, Gamburd, Alex On the spectral gap for finitely-generated subgroups of 𝑆𝑈(2) Invent. Math. 2008 83 121

[8] Bourgain, Jean, Gamburd, Alex, Sarnak, Peter Sieving and expanders C. R. Math. Acad. Sci. Paris 2006 155 159

[9] Burger, M. Kazhdan constants for 𝑆𝐿(3,𝑍) J. Reine Angew. Math. 1991 36 67

[10] Einsiedler, Manfred, Lindenstrauss, Elon Rigidity properties of ℤ^{𝕕}-actions on tori and solenoids Electron. Res. Announc. Amer. Math. Soc. 2003 99 110

[11] Furstenberg, Harry Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation Math. Systems Theory 1967 1 49

[12] Furstenberg, Hillel Stiffness of group actions 1998 105 117

[13] Falconer, K. J. Hausdorff dimension and the exceptional set of projections Mathematika 1982 109 115

[14] Furstenberg, Harry Noncommuting random products Trans. Amer. Math. Soc. 1963 377 428

[15] Furstenberg, H., Kifer, Y. Random matrix products and measures on projective spaces Israel J. Math. 1983 12 32

[16] Gol′Dsheä­D, I. Ya., Margulis, G. A. Lyapunov exponents of a product of random matrices Uspekhi Mat. Nauk 1989 13 60

[17] Guivarc’H, Y., Raugi, A. Products of random matrices: convergence theorems 1986 31 54

[18] Guivarc’H, Yves, Raugi, Albert Propriétés de contraction d’un semi-groupe de matrices inversibles. Coefficients de Liapunoff d’un produit de matrices aléatoires indépendantes Israel J. Math. 1989 165 196

[19] Guivarc’H, Y., Starkov, A. N. Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms Ergodic Theory Dynam. Systems 2004 767 802

[20] Kalinin, Boris, Katok, Anatole Invariant measures for actions of higher rank abelian groups 2001 593 637

[21] Katok, A., Spatzier, R. J. Invariant measures for higher-rank hyperbolic abelian actions Ergodic Theory Dynam. Systems 1996 751 778

[22] Katz, Nets Hawk, Tao, Terence Some connections between Falconer’s distance set conjecture and sets of Furstenburg type New York J. Math. 2001 149 187

[23] Katznelson, Yitzhak An introduction to harmonic analysis 1968

[24] Le Page, ÉMile Théorèmes limites pour les produits de matrices aléatoires 1982 258 303

[25] Margulis, Gregory Problems and conjectures in rigidity theory 2000 161 174

[26] Mattila, Pertti Geometry of sets and measures in Euclidean spaces 1995

[27] Muchnik, Roman Semigroup actions on 𝕋ⁿ Geom. Dedicata 2005 1 47

[28] Peres, Yuval, Schlag, Wilhelm Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions Duke Math. J. 2000 193 251

[29] Ratner, Marina Interactions between ergodic theory, Lie groups, and number theory 1995 157 182

[30] Rudolph, Daniel J. ×2 and ×3 invariant measures and entropy Ergodic Theory Dynam. Systems 1990 395 406

Cité par Sources :