The complex Monge-Ampère equation on compact Hermitian manifolds
Journal of the American Mathematical Society, Tome 23 (2010) no. 4, pp. 1187-1195

Voir la notice de l'article provenant de la source American Mathematical Society

We show that, up to scaling, the complex Monge-Ampère equation on compact Hermitian manifolds always admits a smooth solution.
DOI : 10.1090/S0894-0347-2010-00673-X

Tosatti, Valentino 1 ; Weinkove, Ben 2

1 Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027
2 Department of Mathematics, University of California San Diego, 9500 Gilman Drive #0112, La Jolla, California 92093
@article{10_1090_S0894_0347_2010_00673_X,
     author = {Tosatti, Valentino and Weinkove, Ben},
     title = {The complex {Monge-Amp\~A{\textasciidieresis}re} equation on compact {Hermitian} manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {1187--1195},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2010},
     doi = {10.1090/S0894-0347-2010-00673-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00673-X/}
}
TY  - JOUR
AU  - Tosatti, Valentino
AU  - Weinkove, Ben
TI  - The complex Monge-Ampère equation on compact Hermitian manifolds
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 1187
EP  - 1195
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00673-X/
DO  - 10.1090/S0894-0347-2010-00673-X
ID  - 10_1090_S0894_0347_2010_00673_X
ER  - 
%0 Journal Article
%A Tosatti, Valentino
%A Weinkove, Ben
%T The complex Monge-Ampère equation on compact Hermitian manifolds
%J Journal of the American Mathematical Society
%D 2010
%P 1187-1195
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00673-X/
%R 10.1090/S0894-0347-2010-00673-X
%F 10_1090_S0894_0347_2010_00673_X
Tosatti, Valentino; Weinkove, Ben. The complex Monge-Ampère equation on compact Hermitian manifolds. Journal of the American Mathematical Society, Tome 23 (2010) no. 4, pp. 1187-1195. doi: 10.1090/S0894-0347-2010-00673-X

[1] Aubin, Thierry Équations du type Monge-Ampère sur les variétés kählériennes compactes Bull. Sci. Math. (2) 1978 63 95

[2] Calabi, Eugenio On Kähler manifolds with vanishing canonical class 1957 78 89

[3] Cherrier, Pascal Équations de Monge-Ampère sur les variétés hermitiennes compactes Bull. Sci. Math. (2) 1987 343 385

[4] Delanoã«, Philippe Équations du type de Monge-Ampère sur les variétés riemanniennes compactes. II J. Functional Analysis 1981 341 353

[5] Gauduchon, Paul Le théorème de l’excentricité nulle C. R. Acad. Sci. Paris Sér. A-B 1977

[6] Gauduchon, Paul La 1-forme de torsion d’une variété hermitienne compacte Math. Ann. 1984 495 518

[7] Hanani, Abdellah Équations du type de Monge-Ampère sur les variétés hermitiennes compactes J. Funct. Anal. 1996 49 75

[8] Yau, Shing Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I Comm. Pure Appl. Math. 1978 339 411

Cité par Sources :