Noether-Lefschetz theory and the Yau-Zaslow conjecture
Journal of the American Mathematical Society, Tome 23 (2010) no. 4, pp. 1013-1040

Voir la notice de l'article provenant de la source American Mathematical Society

The Yau-Zaslow conjecture predicts the genus 0 curve counts of $K3$ surfaces in terms of the Dedekind $\eta$ function. The classical intersection theory of curves in the moduli of $K3$ surfaces with Noether-Lefschetz divisors is related to 3-fold Gromov-Witten invariants via the $K3$ curve counts. Results by Borcherds and Kudla-Millson determine these classical intersections in terms of vector-valued modular forms. Proven mirror transformations can often be used to calculate the 3-fold invariants which arise. Via a detailed study of the STU model (determining special curves in the moduli of $K3$ surfaces), we prove the Yau-Zaslow conjecture for all curve classes on $K3$ surfaces. Two modular form identities are required. The first, the Klemm-Lerche-Mayr identity relating hypergeometric series to modular forms after mirror transformation, is proven here. The second, the Harvey-Moore identity, is proven by D. Zagier and presented in the paper.
DOI : 10.1090/S0894-0347-2010-00672-8

Klemm, A. 1 ; Maulik, D. 2 ; Pandharipande, R. 3 ; Scheidegger, E. 4

1 Department of Physics, University of Bonn, Endenicher Allee 11-13, Bonn, 53115 Germany, and Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, WI 53706-1390
2 Department of Mathematics, Columbia University, New York, NY 10027
3 Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000
4 Department of Mathematics, University of Augsburg, 86135 Augsburg, Germany
@article{10_1090_S0894_0347_2010_00672_8,
     author = {Klemm, A. and Maulik, D. and Pandharipande, R. and Scheidegger, E.},
     title = {Noether-Lefschetz theory and the {Yau-Zaslow} conjecture},
     journal = {Journal of the American Mathematical Society},
     pages = {1013--1040},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2010},
     doi = {10.1090/S0894-0347-2010-00672-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00672-8/}
}
TY  - JOUR
AU  - Klemm, A.
AU  - Maulik, D.
AU  - Pandharipande, R.
AU  - Scheidegger, E.
TI  - Noether-Lefschetz theory and the Yau-Zaslow conjecture
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 1013
EP  - 1040
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00672-8/
DO  - 10.1090/S0894-0347-2010-00672-8
ID  - 10_1090_S0894_0347_2010_00672_8
ER  - 
%0 Journal Article
%A Klemm, A.
%A Maulik, D.
%A Pandharipande, R.
%A Scheidegger, E.
%T Noether-Lefschetz theory and the Yau-Zaslow conjecture
%J Journal of the American Mathematical Society
%D 2010
%P 1013-1040
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00672-8/
%R 10.1090/S0894-0347-2010-00672-8
%F 10_1090_S0894_0347_2010_00672_8
Klemm, A.; Maulik, D.; Pandharipande, R.; Scheidegger, E. Noether-Lefschetz theory and the Yau-Zaslow conjecture. Journal of the American Mathematical Society, Tome 23 (2010) no. 4, pp. 1013-1040. doi: 10.1090/S0894-0347-2010-00672-8

[1] Behrend, K. Gromov-Witten invariants in algebraic geometry Invent. Math. 1997 601 617

[2] Behrend, K., Fantechi, B. The intrinsic normal cone Invent. Math. 1997 45 88

[3] Beauville, Arnaud Counting rational curves on 𝐾3 surfaces Duke Math. J. 1999 99 108

[4] Borcherds, Richard E. The Gross-Kohnen-Zagier theorem in higher dimensions Duke Math. J. 1999 219 233

[5] Bruinier, Jan Hendrik On the rank of Picard groups of modular varieties attached to orthogonal groups Compositio Math. 2002 49 63

[6] Bryan, Jim, Leung, Naichung Conan The enumerative geometry of 𝐾3 surfaces and modular forms J. Amer. Math. Soc. 2000 371 410

[7] Chen, Xi Rational curves on 𝐾3 surfaces J. Algebraic Geom. 1999 245 278

[8] Cox, David A. The homogeneous coordinate ring of a toric variety J. Algebraic Geom. 1995 17 50

[9] Cox, David A., Katz, Sheldon Mirror symmetry and algebraic geometry 1999

[10] Fantechi, B., Gã¶Ttsche, L., Van Straten, D. Euler number of the compactified Jacobian and multiplicity of rational curves J. Algebraic Geom. 1999 115 133

[11] Fulton, William Introduction to toric varieties 1993

[12] Gathmann, Andreas The number of plane conics that are five-fold tangent to a given curve Compos. Math. 2005 487 501

[13] Givental, Alexander B. Equivariant Gromov-Witten invariants Internat. Math. Res. Notices 1996 613 663

[14] Givental, Alexander A mirror theorem for toric complete intersections 1998 141 175

[15] Harvey, Jeffrey A., Moore, Gregory Algebras, BPS states, and strings Nuclear Phys. B 1996 315 368

[16] Harvey, Jeffrey A., Moore, Gregory Exact gravitational threshold correction in the Ferrara-Harvey-Strominger-Vafa model Phys. Rev. D (3) 1998 2329 2336

[17] Kachru, Shamit, Vafa, Cumrun Exact results for 𝑁 Nuclear Phys. B 1995 69 89

[18] Katz, Sheldon, Klemm, Albrecht, Vafa, Cumrun M-theory, topological strings and spinning black holes Adv. Theor. Math. Phys. 1999 1445 1537

[19] Kawai, Toshiya, Yoshioka, K\B{O}Ta String partition functions and infinite products Adv. Theor. Math. Phys. 2000 397 485

[20] Klemm, Albrecht, Kreuzer, Maximilian, Riegler, Erwin, Scheidegger, Emanuel Topological string amplitudes, complete intersection Calabi-Yau spaces and threshold corrections J. High Energy Phys. 2005

[21] Klemm, A., Lerche, W., Mayr, P. 𝐾₃-fibrations and heterotic–type II string duality Phys. Lett. B 1995 313 322

[22] Kudla, Stephen S., Millson, John J. Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables Inst. Hautes Études Sci. Publ. Math. 1990 121 172

[23] Lee, Junho, Leung, Naichung Conan Yau-Zaslow formula on 𝐾3 surfaces for non-primitive classes Geom. Topol. 2005 1977 2012

[24] Li, Jun A degeneration formula of GW-invariants J. Differential Geom. 2002 199 293

[25] Li, Jun, Tian, Gang Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties J. Amer. Math. Soc. 1998 119 174

[26] Lian, Bong H., Liu, Kefeng, Yau, Shing-Tung Mirror principle. I Asian J. Math. 1997 729 763

[27] Mariã±O, Marcos, Moore, Gregory Counting higher genus curves in a Calabi-Yau manifold Nuclear Phys. B 1999 592 614

[28] Oda, Tadao Convex bodies and algebraic geometry 1988

[29] Pandharipande, Rahul Rational curves on hypersurfaces (after A. Givental) Astérisque 1998

[30] Pandharipande, R., Thomas, R. P. Stable pairs and BPS invariants J. Amer. Math. Soc. 2010 267 297

[31] Wu, Baosen The number of rational curves on 𝐾3 surfaces Asian J. Math. 2007 635 650

[32] Yau, Shing-Tung, Zaslow, Eric BPS states, string duality, and nodal curves on 𝐾3 Nuclear Phys. B 1996 503 512

[33] Zagier, Don Elliptic modular forms and their applications 2008 1 103

Cité par Sources :