Nonlinear wave propagations over a Boltzmann shock profile
Journal of the American Mathematical Society, Tome 23 (2010) no. 4, pp. 1041-1118

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper we study the wave propagation over a Boltzmann shock profile and obtain pointwise time-asymptotic stability of Boltzmann shocks. We design a ${\mathbb T}$-${\mathbb C}$ scheme to study the coupling of the transverse and compression waves. The pointwise information of the Green’s functions of the Boltzmann equation linearized around the end Maxwellian states of the shock wave provides the basic estimates for the transient waves. The compression of the Boltzmann shock profile together with a low order damping allows for an accurate energy estimate by a localized scalar equation. These two methods are combined to construct an exponentially sharp pointwise linear wave propagation structure around a Boltzmann shock profile. The pointwise estimates thus obtained are strong enough to study the pointwise nonlinear wave coupling and to conclude the convergence with an optimal convergent rate $O(1)[(1+t)(1+\varepsilon t)]^{-1/2}$ around the Boltzmann shock front, where $\varepsilon$ is the strength of a shock wave.
DOI : 10.1090/S0894-0347-2010-00671-6

Yu, Shih-Hsien 1

1 Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore, 119076
@article{10_1090_S0894_0347_2010_00671_6,
     author = {Yu, Shih-Hsien},
     title = {Nonlinear wave propagations over a {Boltzmann} shock profile},
     journal = {Journal of the American Mathematical Society},
     pages = {1041--1118},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2010},
     doi = {10.1090/S0894-0347-2010-00671-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00671-6/}
}
TY  - JOUR
AU  - Yu, Shih-Hsien
TI  - Nonlinear wave propagations over a Boltzmann shock profile
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 1041
EP  - 1118
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00671-6/
DO  - 10.1090/S0894-0347-2010-00671-6
ID  - 10_1090_S0894_0347_2010_00671_6
ER  - 
%0 Journal Article
%A Yu, Shih-Hsien
%T Nonlinear wave propagations over a Boltzmann shock profile
%J Journal of the American Mathematical Society
%D 2010
%P 1041-1118
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00671-6/
%R 10.1090/S0894-0347-2010-00671-6
%F 10_1090_S0894_0347_2010_00671_6
Yu, Shih-Hsien. Nonlinear wave propagations over a Boltzmann shock profile. Journal of the American Mathematical Society, Tome 23 (2010) no. 4, pp. 1041-1118. doi: 10.1090/S0894-0347-2010-00671-6

[1] Caflisch, Russel E., Nicolaenko, Basil Shock profile solutions of the Boltzmann equation Comm. Math. Phys. 1982 161 194

[2] Goodman, Jonathan Nonlinear asymptotic stability of viscous shock profiles for conservation laws Arch. Rational Mech. Anal. 1986 325 344

[3] Goodman, Jonathan Stability of viscous scalar shock fronts in several dimensions Trans. Amer. Math. Soc. 1989 683 695

[4] Grad, Harold Asymptotic theory of the Boltzmann equation Phys. Fluids 1963 147 181

[5] Grad, Harold Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations 1965 154 183

[6] Grad, Harold Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations 1965 154 183

[7] Liu, Tai-Ping Nonlinear stability of shock waves for viscous conservation laws Mem. Amer. Math. Soc. 1985

[8] Liu, Tai-Ping Pointwise convergence to shock waves for viscous conservation laws Comm. Pure Appl. Math. 1997 1113 1182

[9] Liu, Tai-Ping, Zeng, Yanni Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws Mem. Amer. Math. Soc. 1997

[10] Liu, Tai-Ping, Zeng, Yanni Time-asymptotic behavior of wave propagation around a viscous shock profile Comm. Math. Phys. 2009 23 82

[11] Liu, Tai-Ping, Yu, Shih-Hsien Propagation of a stationary shock layer in the presence of a boundary Arch. Rational Mech. Anal. 1997 57 82

[12] Liu, Tai-Ping, Yu, Shih-Hsien Boltzmann equation: micro-macro decompositions and positivity of shock profiles Comm. Math. Phys. 2004 133 179

[13] Liu, Tai-Ping, Yu, Shih-Hsien The Green’s function and large-time behavior of solutions for the one-dimensional Boltzmann equation Comm. Pure Appl. Math. 2004 1543 1608

[14] Liu, Tai-Ping, Yu, Shih-Hsien Green’s function of Boltzmann equation, 3-D waves Bull. Inst. Math. Acad. Sin. (N.S.) 2006 1 78

[15] Liu, Tai-Ping, Yu, Shih-Hsien Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation Comm. Pure Appl. Math. 2007 295 356

[16] Liu, Tai-Ping, Yu, Shih-Hsien Viscous shock wave tracing, local conservation laws, and pointwise estimates Bull. Inst. Math. Acad. Sin. (N.S.) 2009 235 297

[17] Matsumura, Akitaka, Nishihara, Kenji On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas Japan J. Appl. Math. 1985 17 25

[18] Sone, Yoshio, Golse, Franã§Ois, Ohwada, Taku, Doi, Toshiyuki Analytical study of transonic flows of a gas condensing onto its plane condensed phase on the basis of kinetic theory Eur. J. Mech. B Fluids 1998 277 306

[19] Sone, Yoshio Molecular gas dynamics 2007

[20] Zeng, Yanni 𝐿¹ asymptotic behavior of compressible, isentropic, viscous 1-D flow Comm. Pure Appl. Math. 1994 1053 1082

Cité par Sources :