On the heat kernel of the Bergmann metric on algebraic varieties
Journal of the American Mathematical Society, Tome 08 (1995) no. 4, pp. 857-877

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1995_1320155_0,
     author = {Li, Peter and Tian, Gang},
     title = {On the heat kernel of the {Bergmann} metric on algebraic varieties},
     journal = {Journal of the American Mathematical Society},
     pages = {857--877},
     publisher = {mathdoc},
     volume = {08},
     number = {4},
     year = {1995},
     doi = {10.1090/S0894-0347-1995-1320155-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1320155-0/}
}
TY  - JOUR
AU  - Li, Peter
AU  - Tian, Gang
TI  - On the heat kernel of the Bergmann metric on algebraic varieties
JO  - Journal of the American Mathematical Society
PY  - 1995
SP  - 857
EP  - 877
VL  - 08
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1320155-0/
DO  - 10.1090/S0894-0347-1995-1320155-0
ID  - 10_1090_S0894_0347_1995_1320155_0
ER  - 
%0 Journal Article
%A Li, Peter
%A Tian, Gang
%T On the heat kernel of the Bergmann metric on algebraic varieties
%J Journal of the American Mathematical Society
%D 1995
%P 857-877
%V 08
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1320155-0/
%R 10.1090/S0894-0347-1995-1320155-0
%F 10_1090_S0894_0347_1995_1320155_0
Li, Peter; Tian, Gang. On the heat kernel of the Bergmann metric on algebraic varieties. Journal of the American Mathematical Society, Tome 08 (1995) no. 4, pp. 857-877. doi: 10.1090/S0894-0347-1995-1320155-0

[1] Chavel, I., Feldman, E. A. Spectra of domains in compact manifolds J. Functional Analysis 1978 198 222

[2] Cheeger, Jeff, Yau, Shing Tung A lower bound for the heat kernel Comm. Pure Appl. Math. 1981 465 480

[3] Cheng, Siu Yuen, Li, Peter, Yau, Shing Tung On the upper estimate of the heat kernel of a complete Riemannian manifold Amer. J. Math. 1981 1021 1063

[4] Cheng, Shiu Yuen, Li, Peter, Yau, Shing-Tung Heat equations on minimal submanifolds and their applications Amer. J. Math. 1984 1033 1065

[5] Gaffney, Matthew P. The harmonic operator for exterior differential forms Proc. Nat. Acad. Sci. U.S.A. 1951 48 50

[6] Li, Peter Eigenvalue estimates on homogeneous manifolds Comment. Math. Helv. 1980 347 363

[7] Li, Peter, Yau, Shing-Tung On the parabolic kernel of the Schrödinger operator Acta Math. 1986 153 201

[8] Michael, J. H., Simon, L. M. Sobolev and mean-value inequalities on generalized submanifolds of 𝑅ⁿ Comm. Pure Appl. Math. 1973 361 379

[9] Nagase, Masayoshi On the heat operators of normal singular algebraic surfaces J. Differential Geom. 1988 37 57

[10] Pati, Vishwambhar The heat trace on singular algebraic threefolds J. Differential Geom. 1993 245 261

[11] Schoen, R., Wolpert, S., Yau, S. T. Geometric bounds on the low eigenvalues of a compact surface 1980 279 285

[12] Simon, Leon Lectures on geometric measure theory 1983

Cité par Sources :