Chern-Schwartz-MacPherson classes and the Euler characteristic of degeneracy loci and special divisors
Journal of the American Mathematical Society, Tome 08 (1995) no. 4, pp. 793-817

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1995_1311826_0,
     author = {Parusi\r{A}„ski, Adam and Pragacz, Piotr},
     title = {Chern-Schwartz-MacPherson classes and the {Euler} characteristic of degeneracy loci and special divisors},
     journal = {Journal of the American Mathematical Society},
     pages = {793--817},
     publisher = {mathdoc},
     volume = {08},
     number = {4},
     year = {1995},
     doi = {10.1090/S0894-0347-1995-1311826-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1311826-0/}
}
TY  - JOUR
AU  - Parusiński, Adam
AU  - Pragacz, Piotr
TI  - Chern-Schwartz-MacPherson classes and the Euler characteristic of degeneracy loci and special divisors
JO  - Journal of the American Mathematical Society
PY  - 1995
SP  - 793
EP  - 817
VL  - 08
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1311826-0/
DO  - 10.1090/S0894-0347-1995-1311826-0
ID  - 10_1090_S0894_0347_1995_1311826_0
ER  - 
%0 Journal Article
%A Parusiński, Adam
%A Pragacz, Piotr
%T Chern-Schwartz-MacPherson classes and the Euler characteristic of degeneracy loci and special divisors
%J Journal of the American Mathematical Society
%D 1995
%P 793-817
%V 08
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1311826-0/
%R 10.1090/S0894-0347-1995-1311826-0
%F 10_1090_S0894_0347_1995_1311826_0
Parusiński, Adam; Pragacz, Piotr. Chern-Schwartz-MacPherson classes and the Euler characteristic of degeneracy loci and special divisors. Journal of the American Mathematical Society, Tome 08 (1995) no. 4, pp. 793-817. doi: 10.1090/S0894-0347-1995-1311826-0

[1] Arbarello, Enrico, Cornalba, Maurizio On a conjecture of Petri Comment. Math. Helv. 1981 1 38

[2] Brasselet, J.-P., Schwartz, M.-H. Sur les classes de Chern d’un ensemble analytique complexe 1981 93 147

[3] Fulton, William Intersection theory 1984

[4] Fulton, W., Lazarsfeld, R. On the connectedness of degeneracy loci and special divisors Acta Math. 1981 271 283

[5] Gessel, Ira, Viennot, Gã©Rard Binomial determinants, paths, and hook length formulae Adv. in Math. 1985 300 321

[6] Gieseker, D. Stable curves and special divisors: Petri’s conjecture Invent. Math. 1982 251 275

[7] Goresky, Mark, Macpherson, Robert Stratified Morse theory 1988

[8] Griffiths, Phillip, Harris, Joseph On the variety of special linear systems on a general algebraic curve Duke Math. J. 1980 233 272

[9] Hirzebruch, F. Topological methods in algebraic geometry 1966

[10] Harris, J., Tu, L. Chern numbers of kernel and cokernel bundles Invent. Math. 1984 467 475

[11] Kleiman, Steven L., Laksov, Dan Another proof of the existence of special divisors Acta Math. 1974 163 176

[12] L㪠Då©Ng Trã¡Ng, Teissier, Bernard Variétés polaires locales et classes de Chern des variétés singulières Ann. of Math. (2) 1981 457 491

[13] Macdonald, I. G. Symmetric functions and Hall polynomials 1979

[14] Macpherson, R. D. Chern classes for singular algebraic varieties Ann. of Math. (2) 1974 423 432

[15] Aznar, Vicente Navarro On the Chern classes and the Euler characteristic for nonsingular complete intersections Proc. Amer. Math. Soc. 1980 143 148

[16] Parusiå„Ski, Adam, Pragacz, Piotr Characteristic numbers of degeneracy loci 1991 189 197

[17] Parusiå„Ski, Adam, Pragacz, Piotr A formula for the Euler characteristic of singular hypersurfaces J. Algebraic Geom. 1995 337 351

[18] Pragacz, Piotr Enumerative geometry of degeneracy loci Ann. Sci. École Norm. Sup. (4) 1988 413 454

[19] Pragacz, Piotr Algebro-geometric applications of Schur 𝑆- and 𝑄-polynomials 1991 130 191

[20] Pragacz, Piotr, Ratajski, Jan Polynomials homologically supported on degeneracy loci Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1996 99 118

[21] Schwartz, Marie-Hã©Lã¨Ne Classes caractéristiques définies par une stratification d’une variété analytique complexe C. R. Acad. Sci. Paris 1965 3535 3537

Cité par Sources :