The Willmore functional on Lagrangian tori: its relation to area and existence of smooth minimizers
Journal of the American Mathematical Society, Tome 08 (1995) no. 4, pp. 761-791

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper we prove an existence and regularity theorem for lagrangian tori minimizing the Willmore functional in Euclidean four-space, ${{\mathbf {R}}^4}$, with the standard metric and symplectic structure. Technical difficulties arise because the Euler-Lagrange equation for this problem is a sixth-order nonlinear partial differential equation. This research was motivated by a study of the seemingly unrelated Plateau problem for lagrangian tori, and in this paper we illustrate this connection.
@article{10_1090_S0894_0347_1995_1311825_9,
     author = {Minicozzi, William P.},
     title = {The {Willmore} functional on {Lagrangian} tori: its relation to area and existence of smooth minimizers},
     journal = {Journal of the American Mathematical Society},
     pages = {761--791},
     publisher = {mathdoc},
     volume = {08},
     number = {4},
     year = {1995},
     doi = {10.1090/S0894-0347-1995-1311825-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1311825-9/}
}
TY  - JOUR
AU  - Minicozzi, William P.
TI  - The Willmore functional on Lagrangian tori: its relation to area and existence of smooth minimizers
JO  - Journal of the American Mathematical Society
PY  - 1995
SP  - 761
EP  - 791
VL  - 08
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1311825-9/
DO  - 10.1090/S0894-0347-1995-1311825-9
ID  - 10_1090_S0894_0347_1995_1311825_9
ER  - 
%0 Journal Article
%A Minicozzi, William P.
%T The Willmore functional on Lagrangian tori: its relation to area and existence of smooth minimizers
%J Journal of the American Mathematical Society
%D 1995
%P 761-791
%V 08
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1311825-9/
%R 10.1090/S0894-0347-1995-1311825-9
%F 10_1090_S0894_0347_1995_1311825_9
Minicozzi, William P. The Willmore functional on Lagrangian tori: its relation to area and existence of smooth minimizers. Journal of the American Mathematical Society, Tome 08 (1995) no. 4, pp. 761-791. doi: 10.1090/S0894-0347-1995-1311825-9

[1] Chen, Bang-Yen Geometry of submanifolds 1973

[2] Gilbarg, David, Trudinger, Neil S. Elliptic partial differential equations of second order 1983

[3] Hoffman, David A. Surfaces of constant mean curvature in manifolds of constant curvature J. Differential Geometry 1973 161 176

[4] Li, Peter, Yau, Shing Tung A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces Invent. Math. 1982 269 291

[5] Morrey, Charles B., Jr. Multiple integrals in the calculus of variations 1966

[6] Simon, Leon Existence of surfaces minimizing the Willmore functional Comm. Anal. Geom. 1993 281 326

[7] Simon, Leon Lectures on geometric measure theory 1983

[8] Simons, James Minimal varieties in riemannian manifolds Ann. of Math. (2) 1968 62 105

[9] Stein, Elias M. Singular integrals and differentiability properties of functions 1970

[10] Trã¨Ves, Franã§Ois Basic linear partial differential equations 1975

[11] Weiner, Joel L. On a problem of Chen, Willmore, et al Indiana Univ. Math. J. 1978 19 35

[12] Willmore, Thomas J. Total curvature in Riemannian geometry 1982 168

Cité par Sources :