Flat vector bundles, direct images and higher real analytic torsion
Journal of the American Mathematical Society, Tome 08 (1995) no. 2, pp. 291-363

Voir la notice de l'article provenant de la source American Mathematical Society

We prove a Riemann-Roch-Grothendieck-type theorem concerning the direct image of a flat vector bundle under a submersion of smooth manifolds. We refine this theorem to the level of differential forms. We construct associated secondary invariants, the analytic torsion forms, which coincide in degree 0 with the Ray-Singer real analytic torsion. Résumé. On démontre un analogue du théorème de Riemann-Roch-Grothendieck pour l’image directe d’un fibré plat par une submersion. On raffine ce théorème au niveau des formes différentielles. On construit des invariants secondaires, les formes de torsion analytique, qui coïncident, en degré 0, avec la torsion de Ray-Singer.
@article{10_1090_S0894_0347_1995_1303026_5,
     author = {Bismut, Jean-Michel and Lott, John},
     title = {Flat vector bundles, direct images and higher real analytic torsion},
     journal = {Journal of the American Mathematical Society},
     pages = {291--363},
     publisher = {mathdoc},
     volume = {08},
     number = {2},
     year = {1995},
     doi = {10.1090/S0894-0347-1995-1303026-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1303026-5/}
}
TY  - JOUR
AU  - Bismut, Jean-Michel
AU  - Lott, John
TI  - Flat vector bundles, direct images and higher real analytic torsion
JO  - Journal of the American Mathematical Society
PY  - 1995
SP  - 291
EP  - 363
VL  - 08
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1303026-5/
DO  - 10.1090/S0894-0347-1995-1303026-5
ID  - 10_1090_S0894_0347_1995_1303026_5
ER  - 
%0 Journal Article
%A Bismut, Jean-Michel
%A Lott, John
%T Flat vector bundles, direct images and higher real analytic torsion
%J Journal of the American Mathematical Society
%D 1995
%P 291-363
%V 08
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1303026-5/
%R 10.1090/S0894-0347-1995-1303026-5
%F 10_1090_S0894_0347_1995_1303026_5
Bismut, Jean-Michel; Lott, John. Flat vector bundles, direct images and higher real analytic torsion. Journal of the American Mathematical Society, Tome 08 (1995) no. 2, pp. 291-363. doi: 10.1090/S0894-0347-1995-1303026-5

[1] Bismut, Jean-Michel The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs Invent. Math. 1986 91 151

[2] Bismut, Jean-Michel, Cheeger, Jeff 𝜂-invariants and their adiabatic limits J. Amer. Math. Soc. 1989 33 70

[3] Besse, Arthur L. Einstein manifolds 1987

[4] Berthomieu, Alain, Bismut, Jean-Michel Quillen metrics and higher analytic torsion forms J. Reine Angew. Math. 1994 85 184

[5] Becker, J. C., Gottlieb, D. H. Transfer maps for fibrations and duality Compositio Math. 1976 107 133

[6] Bismut, J.-M., Gillet, H., Soulã©, C. Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion Comm. Math. Phys. 1988 49 78

[7] Berline, Nicole, Getzler, Ezra, Vergne, Michã¨Le Heat kernels and Dirac operators 1992

[8] Bismut, Jean-Michel, Kã¶Hler, Kai Higher analytic torsion forms for direct images and anomaly formulas J. Algebraic Geom. 1992 647 684

[9] Bismut, Jean-Michel, Lebeau, Gilles Complex immersions and Quillen metrics Inst. Hautes Études Sci. Publ. Math. 1991

[10] Bismut, Jean-Michel, Lott, John Fibrés plats, images directes et formes de torsion analytique C. R. Acad. Sci. Paris Sér. I Math. 1993 477 482

[11] Borel, Armand Stable real cohomology of arithmetic groups Ann. Sci. École Norm. Sup. (4) 1974

[12] Bott, Raoul, Chern, S. S. Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections Acta Math. 1965 71 112

[13] Cheeger, Jeff Analytic torsion and the heat equation Ann. of Math. (2) 1979 259 322

[14] Cheeger, Jeff, Simons, James Differential characters and geometric invariants 1985 50 80

[15] Dupont, Johan L. Simplicial de Rham cohomology and characteristic classes of flat bundles Topology 1976 233 245

[16] Igusa, Kiyoshi Parametrized Morse theory and its applications 1991 643 651

[17] Klein, John R. Higher Franz-Reidemeister torsion: low-dimensional applications 1993 195 204

[18] Kamber, Franz W., Tondeur, Philippe Characteristic invariants of foliated bundles Manuscripta Math. 1974 51 89

[19] Loday, Jean-Louis Les matrices monomiales et le groupe de Whitehead 𝑊ℎ₂ 1976 155 163

[20] Milnor, J. Whitehead torsion Bull. Amer. Math. Soc. 1966 358 426

[21] Cheeger, Jeff Analytic torsion and the heat equation Ann. of Math. (2) 1979 259 322

[22] Mã¼Ller, Werner Analytic torsion and 𝑅-torsion for unimodular representations J. Amer. Math. Soc. 1993 721 753

[23] Quillen, Daniel Superconnections and the Chern character Topology 1985 89 95

[24] Quillen, Daniel Higher algebraic 𝐾-theory 1975 171 176

[25] Ray, D. B., Singer, I. M. 𝑅-torsion and the Laplacian on Riemannian manifolds Advances in Math. 1971 145 210

[26] Ray, D. B., Singer, I. M. Analytic torsion for complex manifolds Ann. of Math. (2) 1973 154 177

[27] Seeley, R. T. Complex powers of an elliptic operator 1967 288 307

[28] Spivak, Michael A comprehensive introduction to differential geometry. Vol. I 1979

[29] Wagoner, J. B. Diffeomorphisms, 𝐾₂, and analytic torsion 1978 23 33

Cité par Sources :