Schubert polynomials for the classical groups
Journal of the American Mathematical Society, Tome 08 (1995) no. 2, pp. 443-482

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1995_1290232_1,
     author = {Billey, Sara and Haiman, Mark},
     title = {Schubert polynomials for the classical groups},
     journal = {Journal of the American Mathematical Society},
     pages = {443--482},
     publisher = {mathdoc},
     volume = {08},
     number = {2},
     year = {1995},
     doi = {10.1090/S0894-0347-1995-1290232-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1290232-1/}
}
TY  - JOUR
AU  - Billey, Sara
AU  - Haiman, Mark
TI  - Schubert polynomials for the classical groups
JO  - Journal of the American Mathematical Society
PY  - 1995
SP  - 443
EP  - 482
VL  - 08
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1290232-1/
DO  - 10.1090/S0894-0347-1995-1290232-1
ID  - 10_1090_S0894_0347_1995_1290232_1
ER  - 
%0 Journal Article
%A Billey, Sara
%A Haiman, Mark
%T Schubert polynomials for the classical groups
%J Journal of the American Mathematical Society
%D 1995
%P 443-482
%V 08
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1290232-1/
%R 10.1090/S0894-0347-1995-1290232-1
%F 10_1090_S0894_0347_1995_1290232_1
Billey, Sara; Haiman, Mark. Schubert polynomials for the classical groups. Journal of the American Mathematical Society, Tome 08 (1995) no. 2, pp. 443-482. doi: 10.1090/S0894-0347-1995-1290232-1

[1] Bernå¡Teä­N, I. N., Gel′Fand, I. M., Gel′Fand, S. I. Schubert cells, and the cohomology of the spaces 𝐺/𝑃 Uspehi Mat. Nauk 1973 3 26

[2] Bourbaki, N. Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines 1968

[3] Billey, Sara C., Jockusch, William, Stanley, Richard P. Some combinatorial properties of Schubert polynomials J. Algebraic Combin. 1993 345 374

[4] Demazure, Michel Désingularisation des variétés de Schubert généralisées Ann. Sci. École Norm. Sup. (4) 1974 53 88

[5] Edelman, Paul, Greene, Curtis Balanced tableaux Adv. in Math. 1987 42 99

[6] Fomin, Sergey, Stanley, Richard P. Schubert polynomials and the nil-Coxeter algebra Adv. Math. 1994 196 207

[7] Haiman, Mark D. Dual equivalence with applications, including a conjecture of Proctor Discrete Math. 1992 79 113

[8] Kleiman, Steven L. Problem 15: rigorous foundation of Schubert’s enumerative calculus 1976 445 482

[9] Kleiman, S. L., Laksov, Dan Schubert calculus Amer. Math. Monthly 1972 1061 1082

[10] Lascoux, Alain, Schã¼Tzenberger, Marcel-Paul Polynômes de Schubert C. R. Acad. Sci. Paris Sér. I Math. 1982 447 450

[11] Macdonald, I. G. Schubert polynomials 1991 73 99

[12] Macdonald, I. G. Symmetric functions and Hall polynomials 1979

[13] Pragacz, Piotr Algebro-geometric applications of Schur 𝑆- and 𝑄-polynomials 1991 130 191

[14] Sagan, Bruce E. Shifted tableaux, Schur 𝑄-functions, and a conjecture of R. Stanley J. Combin. Theory Ser. A 1987 62 103

[15] Stanley, Richard P. On the number of reduced decompositions of elements of Coxeter groups European J. Combin. 1984 359 372

[16] Stanley, Richard P. Some combinatorial aspects of the Schubert calculus 1977 217 251

[17] Wachs, Michelle L. Flagged Schur functions, Schubert polynomials, and symmetrizing operators J. Combin. Theory Ser. A 1985 276 289

Cité par Sources :