Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1995_1290232_1,
author = {Billey, Sara and Haiman, Mark},
title = {Schubert polynomials for the classical groups},
journal = {Journal of the American Mathematical Society},
pages = {443--482},
publisher = {mathdoc},
volume = {08},
number = {2},
year = {1995},
doi = {10.1090/S0894-0347-1995-1290232-1},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1290232-1/}
}
TY - JOUR AU - Billey, Sara AU - Haiman, Mark TI - Schubert polynomials for the classical groups JO - Journal of the American Mathematical Society PY - 1995 SP - 443 EP - 482 VL - 08 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1290232-1/ DO - 10.1090/S0894-0347-1995-1290232-1 ID - 10_1090_S0894_0347_1995_1290232_1 ER -
%0 Journal Article %A Billey, Sara %A Haiman, Mark %T Schubert polynomials for the classical groups %J Journal of the American Mathematical Society %D 1995 %P 443-482 %V 08 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1290232-1/ %R 10.1090/S0894-0347-1995-1290232-1 %F 10_1090_S0894_0347_1995_1290232_1
Billey, Sara; Haiman, Mark. Schubert polynomials for the classical groups. Journal of the American Mathematical Society, Tome 08 (1995) no. 2, pp. 443-482. doi: 10.1090/S0894-0347-1995-1290232-1
[1] , , Schubert cells, and the cohomology of the spaces ðº/ð Uspehi Mat. Nauk 1973 3 26
[2] Ãléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines 1968
[3] , , Some combinatorial properties of Schubert polynomials J. Algebraic Combin. 1993 345 374
[4] Désingularisation des variétés de Schubert généralisées Ann. Sci. Ãcole Norm. Sup. (4) 1974 53 88
[5] , Balanced tableaux Adv. in Math. 1987 42 99
[6] , Schubert polynomials and the nil-Coxeter algebra Adv. Math. 1994 196 207
[7] Dual equivalence with applications, including a conjecture of Proctor Discrete Math. 1992 79 113
[8] Problem 15: rigorous foundation of Schubertâs enumerative calculus 1976 445 482
[9] , Schubert calculus Amer. Math. Monthly 1972 1061 1082
[10] , Polynômes de Schubert C. R. Acad. Sci. Paris Sér. I Math. 1982 447 450
[11] Schubert polynomials 1991 73 99
[12] Symmetric functions and Hall polynomials 1979
[13] Algebro-geometric applications of Schur ð- and ð-polynomials 1991 130 191
[14] Shifted tableaux, Schur ð-functions, and a conjecture of R. Stanley J. Combin. Theory Ser. A 1987 62 103
[15] On the number of reduced decompositions of elements of Coxeter groups European J. Combin. 1984 359 372
[16] Some combinatorial aspects of the Schubert calculus 1977 217 251
[17] Flagged Schur functions, Schubert polynomials, and symmetrizing operators J. Combin. Theory Ser. A 1985 276 289
Cité par Sources :